Autism Spectrum Disorder (ASD) is characterized by deficits in social interaction and communication. The anterior insula (AI) participates in emotional salience detection; and the posterior insula (PI) participates in sensorimotor integration and response selection. Meta-analyses have noted insula-based aberrant connectivity within ASD. Given the observed social impairments in ASD and the role of the insula in social information processing (SIP), investigating functional organization of this structure in ASD is important. We investigated differences in resting-state functional connectivity (RSFC) using fMRI in male youths with (N=13; mean=14.6 years; range: 10.2-18.0 years) and without ASD (N=17; mean=14.5 years; range: 10.0-17.5 years). With seed-based FC measures, we compared RSFC in insular networks. Hypoconnectivity was observed in ASD (AI-superior frontal gyrus (SFG); AI-thalamus; PI-inferior parietal lobule (IPL); PI-fusiform gyrus (FG); PI-lentiform nucleus/putamen). Using the Social Communication Questionnaire (SCQ) to assess social functioning, regression analyses yielded negative correlations between SCQ scores and RSFC (AI-SFG; AI-thalamus; PI-FG; PI-IPL). Given the insula's connections to limbic regions, and its role in integrating external sensory stimuli with internal states, atypical activity in this structure may be associated with social deficits characterizing ASD. Our results suggest further investigation of the insula's role in SIP across a continuum of social abilities is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901290PMC
http://dx.doi.org/10.1016/j.pscychresns.2018.12.003DOI Listing

Publication Analysis

Top Keywords

autism spectrum
8
spectrum disorder
8
insula participates
8
years range
8
asd
7
social
7
hypoconnectivity insular
4
insular resting-state
4
resting-state networks
4
networks adolescents
4

Similar Publications

Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms.

View Article and Find Full Text PDF

Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder.

Genet Med

December 2024

Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK; Division of Clinical Medicine, University of Sheffield, Sheffield, UK. Electronic address:

Purpose: The TAOK proteins are a group of serine/threonine-protein kinases involved in signalling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity.

View Article and Find Full Text PDF

Foreign body ingestion is sometimes missed during the initial evaluation of a patient with a psychiatric disorder in the emergency department. This is often due to a lack of awareness regarding the need for thorough physical and diagnostic imaging examinations. Additionally, the management of ingested foreign bodies is often controversial.

View Article and Find Full Text PDF

Objective: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that emerges in early childhood and is characterized by difficulties in social communication, repetitive behaviors, and restricted interests. The Ras homolog (Rho)/Rho-kinase signaling pathway plays a critical role in maintaining synaptic structure and function, as it regulates the actin cytoskeleton. This study aims to investigate the expression of the Ras homolog (Rho) family member A (), Rho-kinase 1 (), and Rho-kinase 2 () genes within this pathway in relation to ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!