Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure.

Neuroscience

University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.

Published: February 2019

The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28  d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595490PMC
http://dx.doi.org/10.1016/j.neuroscience.2018.12.023DOI Listing

Publication Analysis

Top Keywords

cochlear nucleus
24
synaptic reorganization
12
auditory nerve
8
changes synaptic
8
gene array
8
gene expression
8
bdnf homer-1
8
synaptic
6
cochlear
6
nucleus
6

Similar Publications

Objective: To provide evidence to use an extended frequency pure tone average to screen for cochlear implant evaluation candidates as recommended by the American Cochlear Implant Alliance. Additionally, to determine whether traditional low frequency, high or low frequency, high frequency, or extended frequency pure tone average most accurately predicts cochlear implant candidates based on speech perception scores from aided AzBio sentence testing or aided consonant-nucleus-consonant (CNC) testing.

Method: Adults from a tertiary care center who completed aided sentence testing during cochlear implant evaluation between 2014 and 2024 were assessed.

View Article and Find Full Text PDF

Background: The intraoperative measurements are essential steps in cochlear implant (CI) surgery for confirming correct electrode placement.

Objectives: To examine the intraoperative impedance and electrically evoked action potential (ECAP) measurement results of cochlear implant (CI) users with normal cochlear anatomy (NCA) and to compare them with CI users with inner ear malformations (IEM).

Material And Methods: This retrospective study included intraoperative data of 300 ears from 258 individuals using Medel and Cochlear (Nucleus) CI devices.

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

Gonad-derived steroid hormones mediate a sex difference in the maturation of auditory encoding in the cochlea from adolescence to early adulthood in C57BL/6J mice.

Hear Res

January 2025

Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

Sexually mature females of multiple mammalian species were previously reported to have increased peripheral auditory sensitivity, often measured as higher auditory brainstem response (ABR) wave I amplitude compared to males. Here, we determined potential hormonal and genetic (i.e.

View Article and Find Full Text PDF

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!