Isolation of earth abundant biopolymer, Lignin, from Dendrocalamus sinicus and their structural properties were investigated to achieve its large-scale practical applications in value-added products. Two lignin fractions (MWL, DSL) were isolated with successive treatments of dioxane and dimethylsulfoxide (DMSO) from dewaxed and ball milled bamboo (D. sinicus) sample. The two-step treatments yielded 52.1% lignin based on the total lignin content in the dewaxed bamboo sample. Spectroscopy analyses indicated that the isolated bamboo lignin was a typical grass lignin, consisting of p-hydroxyphenyl, guaiacyl, and syringyl units. The major interunit linkages presented in the obtained bamboo lignin were β-O-4' aryl ether linkages, together with lower amounts of β-β', β-5', and β-1' linkages. The tricin was detected to be linked to lignin polymer through the β-O-4' linkage in the bamboo. In addition, phenyl glycoside and benzyl ether lignin-carbohydrate complexes (LCC) linkages were clearly detected in bamboo (D. sinicus), whereas the γ-ester LCC linkages were ambiguous due to the overlapping NMR signals with other substructures. The detailed structural properties of the obtained lignin fraction together with the light-weight will benefit efficient utilization of natural polymers as a possibly large-scale bio-based precursor for making polymeric materials, biochemicals, functional carbon and biofuels, and multifunctional polymer nanocomposites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.12.234 | DOI Listing |
Front Plant Sci
January 2025
Fruit Tree Center, Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
With the aim of enhancing plants' ability to respond to pathogenic fungi, this study focuses on disease resistance genes. We commenced a series of investigations by capitalizing on the pronounced differences in resistance to Fusarium wilt between resistant and susceptible varieties. Through an in-depth exploration of the metabolic pathways that bolster this defense, we identified genes associated with resistance to f.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Food Science and Bioengineering, Tianjin Agricultural College, Tianjin 300384, China.
Low-voltage electrostatic field (LP) enhances the freezing quality of food by increasing water supercooling and improving ice crystal morphology. This study explored the effects of LP treatment on the storage quality of square bamboo shoots using physicochemical, gas chromatography-mass spectrometry, and metabolomics methods. Results showed that with prolonged storage, the LP-treated group had lower activities of peroxidase, phenylalanine ammonia-lyase, and lower levels of malondialdehyde, cellulose, and lignin compared to the control group, while superoxide dismutase and catalase activities and shear force values were higher.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guangdong University of Technology, Guangzhou 510006, China.
Effective fractionation of lignocellulose into hemicellulose, cellulose, and lignin is the precondition for full-component valorization. Generally, harsh reaction conditions are used to improve fractionation efficiency, which leads to severe lignin condensation and inhibits its value-added applications. To address this issue, a novel biphasic system consisting of molten salt hydrates (MSHs) and n-butanol was developed for birch fractionation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China. Electronic address:
n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!