Background & Aims: Development of celiac disease is believed to involve the transglutaminase-dependent response of CD4 T cells toward deamidated gluten peptides in the intestinal mucosa of individuals with specific HLA-DQ haplotypes. We investigated the antigen presentation process during this mucosal immune response.
Methods: We generated monoclonal antibodies (mAbs) specific for the peptide-MHC (pMHC) complex of HLA-DQ2.5 and the immunodominant gluten epitope DQ2.5-glia-α1a using phage display. We used these mAbs to assess gluten peptide presentation and phenotypes of presenting cells by flow cytometry and enzyme-linked immune absorbent spot (ELISPOT) in freshly prepared single-cell suspensions from intestinal biopsies from 40 patients with celiac disease (35 untreated and 5 on a gluten-free diet) as well as 18 subjects with confirmed noninflamed gut mucosa (controls, 12 presumed healthy, 5 undergoing pancreatoduodenectomy, and 1 with potential celiac disease).
Results: Using the mAbs, we detected MHC complexes on cells from intestinal biopsies from patients with celiac disease who consume gluten, but not from patients on gluten-free diets. We found B cells and plasma cells to be the most abundant cells that present DQ2.5-glia-α1a in the inflamed mucosa. We identified a subset of plasma cells that expresses B-cell receptors (BCR) specific for gluten peptides or the autoantigen transglutaminase 2 (TG2). Expression of MHC class II (MHCII) was not restricted to these specific plasma cells in patients with celiac disease but was observed in an average 30% of gut plasma cells from patients and controls.
Conclusions: A population of plasma cells from intestinal biopsies of patients with celiac disease express MHCII; this is the most abundant cell type presenting the immunodominant gluten peptide DQ2.5-glia-α1a in the tissues from these patients. These results indicate that plasma cells in the gut can function as antigen-presenting cells and might promote and maintain intestinal inflammation in patients with celiac disease or other inflammatory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441630 | PMC |
http://dx.doi.org/10.1053/j.gastro.2018.12.013 | DOI Listing |
J Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Shahid Beheshti University, Tehran 1635649771, Iran.
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Depeartment of Chemical and Biological Engineering, Colorado School of Mines; Quantitative Biosciences and Engineering, Colorado School of Mines;
Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.
View Article and Find Full Text PDFLAIR1 is an inhibitory receptor broadly expressed on human immune cells, including B cells. LAIR1 has been shown to modulate BCR signaling, however, it is still unclear whether its suppressive activity can be a negative regulator for autoreactivity. In this study, we demonstrate the LAIR1 expression profile on human B cells and prove its regulatory function and relationships to B cell autoreactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!