Background: Base Editing is a precise genome editing method that uses a deaminase-Cas9 fusion protein to mutate cytidine to thymidine in target DNA in situ without the generation of a double-strand break. However, the efficient enrichment of genetically modified cells using this technique is limited by the ability to detect such events.
Results: We have developed a Base Editing FLuorescent Activity REporter (BE-FLARE), which allows for the enrichment of cells that have undergone editing of target loci based on a fluorescence shift from BFP to GFP. We used BE-FLARE to evaluate the editing efficiency of APOBEC3A and APOBEC3B family members as alternatives deaminase domains to the rat APOBEC1 domain used in base editor 3 (BE3). We identified human APOBEC3A and APOBEC3B as highly efficient cytidine deaminases for base editing applications with unique properties.
Conclusions: Using BE-FLARE to report on the efficiency and precision of editing events, we outline workflows for the accelerated generation of genetically engineered cell models and the discovery of alternative base editors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309101 | PMC |
http://dx.doi.org/10.1186/s12915-018-0617-1 | DOI Listing |
Circ Res
January 2025
School of Basic Medical Sciences, Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China. (Z.L., L.Y., Y.Y., J.L., Z.C., C.G., Y.G.).
Front Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFNarra J
December 2024
Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.
View Article and Find Full Text PDFPublic Underst Sci
January 2025
Rowan University, USA.
In recent years, scholars have theorized that one factor enflaming public divides over science and technology is moralization: an individual's perception that their position on an issue is rooted in fundamental moral right and wrong. In this article, I provide evidence for this proposition across five pre-registered hypotheses about the divisive attributes of moralized attitudes in the context of science and technology. Using public opinion data in the United States on three issues-combating climate change, developing gene editing therapies for humans, and labeling genetically modified food-this study demonstrates that moralized attitudes have the potential to exacerbate resistance to scientific evidence and hostility between those with opposing positions.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53715, USA. Electronic address:
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!