Since the initial description of the genomic patterns expected under models of positive selection acting on standing genetic variation and on multiple beneficial mutations-so-called soft selective sweeps-researchers have sought to identify these patterns in natural population data. Indeed, over the past two years, large-scale data analyses have argued that soft sweeps are pervasive across organisms of very different effective population size and mutation rate-humans, Drosophila, and HIV. Yet, others have evaluated the relevance of these models to natural populations, as well as the identifiability of the models relative to other known population-level processes, arguing that soft sweeps are likely to be rare. Here, we look to reconcile these opposing results by carefully evaluating three recent studies and their underlying methodologies. Using population genetic theory, as well as extensive simulation, we find that all three examples are prone to extremely high false-positive rates, incorrectly identifying soft sweeps under both hard sweep and neutral models. Furthermore, we demonstrate that well-fit demographic histories combined with rare hard sweeps serve as the more parsimonious explanation. These findings represent a necessary response to the growing tendency of invoking parameter-heavy, assumption-laden models of pervasive positive selection, and neglecting best practices regarding the construction of proper demographic null models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336318PMC
http://dx.doi.org/10.1371/journal.pgen.1007859DOI Listing

Publication Analysis

Top Keywords

soft sweeps
12
soft selective
8
positive selection
8
models
6
soft
5
sweeps
5
unfounded enthusiasm
4
enthusiasm soft
4
selective sweeps
4
sweeps examining
4

Similar Publications

High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution.

View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

Complete Genomic Landscape Reveals Hidden Evolutionary History and Selection Signature in Asian Water Buffaloes (Bubalus bubalis).

Adv Sci (Weinh)

December 2024

State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

Article Synopsis
  • Researchers sequenced 470 genomes of domesticated river and swamp buffaloes and their wild ancestors to investigate the genetic factors influencing domestication and productivity in Asian water buffaloes.* -
  • Wild swamp buffaloes maintain ancestral morphology, while river buffaloes show distinct traits, yet both have genomes that align closely with wild counterparts; genetic diversity varies significantly across regions.* -
  • Key findings indicate that artificial selection has led to significant genetic adaptations in traits like reproduction, milk production, and coat color, highlighting how domestication affects evolutionary changes in these animals.*
View Article and Find Full Text PDF

Digital Image Processing to Detect Adaptive Evolution.

Mol Biol Evol

December 2024

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.

In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks.

View Article and Find Full Text PDF

There are various flows inside and outside cells in vivo. Nonequilibrium molecular dynamics (NEMD) simulation is a useful tool for understanding the effects of these flows on the dynamics of biomolecules. We propose an NEMD method to generate a Poiseuille-like flow between lipid bilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!