Ras-related C3 botulinum toxin substrate 1 (Rac1) is required for normal insulin-stimulated glucose transport in skeletal muscle and evidence indicates Rac1 may be negatively regulated by lipids. We investigated if insulin-stimulated activation of Rac1 (i.e., Rac1-GTP binding) is impaired by accumulation of diacylglycerols (DAG) and ceramides in cultured muscle cells. Treating L6 myotubes with 100 nmol/L insulin resulted in increased Rac1-GTP binding that was rapid (occurring within 2 min), relatively modest (+38 ± 19% vs. basal, P < 0.001), and short-lived, returning to near-basal levels within 15 min of continuous treatment. Incubating L6 myotubes overnight in 500 μmol/L palmitate increased the accumulation of DAG and ceramides (P < 0.05 vs. no fatty acid control). Despite significant accumulation of lipids, insulin-stimulated Rac1-GTP binding was not impaired during palmitate treatment (P = 0.39 vs. no fatty acid control). Nevertheless, phosphorylation of Rac1 effector protein p21-activated kinase (PAK) was attenuated in response to palmitate treatment (P = 0.02 vs. no fatty acid control). Palmitate treatment also increased inhibitory phosphorylation of insulin receptor substrate-1 and attenuated insulin-stimulated phosphorylation of Akt at both Thr308 and Ser473 (all P < 0.05 vs. no fatty acid control). Such signaling impairments resulted in near complete inhibition of insulin-stimulated translocation of glucose transporter protein 4 (GLUT4; P = 0.10 vs. basal during palmitate treatment). In summary, our finding suggests that Rac1 may not undergo negative regulation by DAG or ceramides. We instead provide evidence that attenuated PAK phosphorylation and impaired GLUT4 translocation during palmitate-induced insulin resistance can occur independent of defects in insulin-stimulated Rac1-GTP binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308110 | PMC |
http://dx.doi.org/10.14814/phy2.13956 | DOI Listing |
Cells
December 2024
Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression.
View Article and Find Full Text PDFFASEB J
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital/Jiangsu Women and Children Health Hospital, Nanjing, 210036, China.
The reproductive lifespan of female mammals is determined by the size of the primordial follicle pool, which comprises oocytes enclosed by a layer of flattened pre-granulosa cells. Oocyte differentiation needs acquiring organelles and cytoplasm from sister germ cells in cysts, but the mechanisms regulating this process remain unknown. Previously helicase for meiosis 1 (HFM1) is reported to be related to the development of premature ovarian insufficiency.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
Increasing evidence suggests that tumor cells exhibit extreme plasticity in migration modes in order to adapt to microenvironments. However, the underlying mechanism for governing the migration mode switching is still unclear. Here, we revealed that epithelial tumor cells could develop a stable directional mode driven by hyperactivated ERK activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!