ATPe Dynamics in Protozoan Parasites. Adapt or Perish.

Genes (Basel)

Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.

Published: December 2018

In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356682PMC
http://dx.doi.org/10.3390/genes10010016DOI Listing

Publication Analysis

Top Keywords

atpe dynamics
16
protozoan parasites
16
atpe
11
atpe degradation
8
controlling atpe
8
protozoan
5
parasite
5
dynamics protozoan
4
parasites
4
parasites adapt
4

Similar Publications

The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F region of enzyme ATP synthase of , thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties.

View Article and Find Full Text PDF

The thermophilic fungus is a saprobe that is commonly isolated from soil. Here, we identified a Gram-positive bacteria-selective antimicrobial secondary metabolite from this fungal species, harzianic acid (HA). Using strain 168 combined with dynamic bacterial morphology imaging, we found that HA targeted the cell membrane.

View Article and Find Full Text PDF

Background: Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients.

Methods: We measured mycobacteria growth indicator tube (MGIT)-based BDQ minimum inhibitory concentrations (MICs) of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB.

View Article and Find Full Text PDF

Clinical resistance against bedaquiline (BDQ) remains intractable to anti-tuberculosis therapies since its introduction to the market over a decade ago. Herein, we investigated the structural and mechanical aspects of BDQ resistance in AtpE, MmpR5, and PepQ. The known target-specific resistant single non-synonymous mutations were refined to high-grade candidates.

View Article and Find Full Text PDF

ATP synthase subunit c (AtpE) is an enzyme that catalyzes the production of ATP from ADP in the presence of sodium or proton gradient from (MTB). This enzyme considered an essential target for drug design and shares the same pathway with the target of Isoniazid. Thus, this enzyme would serve as an alternative target of the Isoniazid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!