Clustering cryo-EM images of helical protein polymers for helical reconstructions.

Ultramicroscopy

Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. Electronic address:

Published: August 2019

AI Article Synopsis

Article Abstract

Helical protein polymers are often dynamic and complex assemblies, with many conformations and flexible domains possible within the helical assembly. During cryo-electron microscopy reconstruction, classification of the image data into homogeneous subsets is a critical step for achieving high resolution, resolving different conformations and elucidating functional mechanisms. Hence, methods aimed at improving the homogeneity of these datasets are becoming increasingly important. In this paper, we introduce a new algorithm that uses results from 2D image classification to sort 2D classes into groups of similar helical polymers. We show that our approach is able to distinguish helical polymers that differ in conformation, composition, and helical symmetry. Our results on test and experimental cases - actin filaments and amyloid fibrils - illustrate how our approach can be useful to improve the homogeneity of a data set. This method is exclusively applicable to helical polymers and other limitations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2018.12.009DOI Listing

Publication Analysis

Top Keywords

helical polymers
12
helical
8
helical protein
8
protein polymers
8
polymers
5
clustering cryo-em
4
cryo-em images
4
images helical
4
polymers helical
4
helical reconstructions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!