Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event. We tested this by examining the retinal cones of a basal teleost group, the osteoglossomorphs. Surprisingly, this lineage has lost the typical vertebrate green-sensitive RH2 opsin gene and, instead, has a duplicate of the LWS opsin that is green sensitive. This parallels the situation in mammalian evolution in which the RH2 opsin gene was lost in basal mammals and a green-sensitive opsin re-evolved in Old World, and independently in some New World, primates from an LWS opsin gene. Another group of fish, the characins, possess green-sensitive LWS cones. Phylogenetic analysis shows that the evolution of green-sensitive LWS opsins in these two teleost groups derives from a common ancestral LWS opsin that acquired green sensitivity. Additionally, the nocturnally active African weakly electric fish (Mormyroideae), which are osteoglossomorphs, show a loss of the SWS1 opsin gene. In comparison with the independently evolved nocturnally active South American weakly electric fish (Gymnotiformes) with a functionally monochromatic LWS opsin cone retina, the presence of SWS2, LWS, and LWS2 cone opsins in mormyrids suggests the possibility of color vision.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msy241DOI Listing

Publication Analysis

Top Keywords

cone opsin
16
wavelength sensitive
16
opsin gene
16
lws opsin
16
electric fish
12
opsin
11
opsin survived
8
genome duplication
8
short wavelength
8
lws
8

Similar Publications

Mutations in the gene ABCA4 coding for photoreceptor-specific ATP-binding cassette subfamily A member 4, are responsible for Stargardts Disease type 1 (STGD1), the most common form of inherited macular degeneration. STGD1 typically declares early in life and leads to severe visual handicap. Abca4 gene-deletion mouse models of STGD1 accumulate lipofuscin, a hallmark of the disease, but unlike the human disease show no or only moderate structural changes and no functional decline.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision.

View Article and Find Full Text PDF

6PPD, Not 6PPD-Quinone, Induced Serious Zebrafish Eye Damage by Disrupting the Thyroid Signaling Pathway.

Environ Sci Technol

December 2024

Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.

N-(1,3-Dimethylbutyl)-'-phenyl-1,4-phenylenediamine (6PPD) and its oxidation product 6PPD-quinone (6PPDQ) showed different acute toxicities and bioaccumulation potencies in fish. In this study, we compared the thyroid disrupting effects of 6PPD and 6PPDQ through , , and assays. Interestingly, although 6PPD and 6PPDQ showed similar docking affinities with thyroid hormone receptor (TR) isoforms and GH3 cell inhibition effects, the thyroid signaling pathway, eye development, phototactic behaviors, and cell density in the retinal layer in the larval zebrafish were significantly affected only following 6PPD exposure.

View Article and Find Full Text PDF

Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference.

Int J Mol Sci

November 2024

Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico.

The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!