Although sweet-tasting saccharides possess similar molecular structures, their relative sweetness often varies to a considerable degree. Current understanding of saccharide structure/sweetness interrelationships is limited. Understanding how certain structural features of saccharides and/or saccharide analogs correlate to their relative sweetness can provide insight on the mechanisms underlying sweetness potency. Maltotriose is a short-chain glucose-based oligosaccharide, which we recently reported to elicit sweet taste. Acarbose, an α-glucosidase inhibitor, is a pseudo-saccharide that has an overall resemblance to a glucose-based oligosaccharide and thus may be viewed as a structural analog. During other studies, we recognized that acarbose can also elicit sweet taste. Here, we formally investigated the underlying taste detection mechanism of acarbose, while confirming our previous findings for maltotriose. We found that subjects could detect the sweet taste of acarbose and maltotriose in aqueous solutions but were not able to detect them in the presence of a sweet taste inhibitor lactisole. These findings support that both are ligands of the human sweet taste receptor, hT1R2/hT1R3. In a separate experiment, we measured the relative sweetness detection of acarbose, maltotriose, and other sweet-tasting mono- and disaccharides (glucose, fructose, maltose, and sucrose). Whereas maltotriose was found to have a similar discriminability profile to glucose and maltose, the discriminability of acarbose matched that of fructose at the concentrations tested (18, 32, and 56 mM). These findings are discussed in terms of how specific molecular features (e.g., degree of polymerization and monomer composition) may contribute to the relative sweetness of saccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/chemse/bjy081 | DOI Listing |
Nutrients
January 2025
Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 21 Mickiewicz Av., 31-120 Krakow, Poland.
Background/objectives: In response to concerns about high-fat and low-fiber diets, this study modified a traditional brownie recipe by replacing butter with plant-based ingredients, including sweet potatoes, red beans, beetroot, zucchini, pumpkin, lentils, and spinach. The goal was to increase vegetable consumption while identifying the best vegetable fat replacer using sensory and instrumental analyses.
Methods: Chemical analyses were conducted to measure dry matter, protein, fat, ash, and dietary fiber, alongside texture, color, and sensory evaluations.
Foods
December 2024
College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three varieties (808, 0912, and LM) from Guizhou, China. Increased frying time and temperature significantly reduced the moisture, polysaccharide, and protein contents, while increasing hardness and chewiness, and decreasing elasticity and extrusion resilience, negatively impacting overall quality. Optimal umami and sweet amino acid retention were achieved by frying at 160 °C frying for 1-3 min or 140-180 °C for 2 min.
View Article and Find Full Text PDFNeuropeptides
January 2025
The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia. Electronic address:
Non-nutritive sweeteners (NNSs) are used to reduce caloric intake by replacing sugar with compounds that are sweet but contain little or no calories. In this study, we investigate how non-nutritive sweetener sucralose to promote acute food intake in the fruit fly Drosophila melanogaster. Our results showed that acute exposure to NNSs sweetness induces a robust hyperphagic response in flies.
View Article and Find Full Text PDFFood Chem
January 2025
Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.
View Article and Find Full Text PDFFood Res Int
January 2025
Centro de Ciências Agrárias (CCA), Universidade Federal de São Carlos (UFSCar), Rod. Anhanguera, Km 174, ZC, 13600-970 Araras, SP, Brazil. Electronic address:
This study aimed to investigate the impact of sucrose reduction on the sensory dynamics and consumer acceptance of short-dough biscuits, incorporating thaumatin as a flavor enhancer. Using the hedonic threshold, the research identified that a 25 % reduction in sucrose was generally acceptable to consumers, whereas a 50 % reduction led to product rejection, indicating a strong preference for sweetness. Temporal Dominance of Sensations (TDS) analysis further confirmed consumers' sensitivity to sugar levels, with a marked preference for biscuits containing a 25 % sucrose reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!