Development of the mammalian circadian clock.

Eur J Neurosci

Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan.

Published: January 2020

The mammalian circadian system is composed of a central clock situated in the hypothalamic suprachiasmatic nucleus (SCN) and peripheral clocks of each tissue and organ in the body. While much has been learned about the pre- and postnatal development of the circadian system, there are still many unanswered questions about how and when cellular clocks start to tick and form the circadian system. Most SCN neurons contain a cell-autonomous circadian clock with individual specific periodicity. Therefore, the network of cellular oscillators is critical for the coherent rhythm expression and orchestration of the peripheral clocks by the SCN. The SCN is the only circadian clock entrained by an environmental light-dark cycle. Photic entrainment starts postnatally, and the SCN starts to function gradually as a central clock that controls physiological and behavioral rhythms during postnatal development. The SCN exhibits circadian rhythms in clock gene expression from the embryonic stage throughout postnatal life and the rhythm phenotypes remain basically unchanged. However, the disappearance of coherent circadian rhythms in cryptochrome-deficient SCN revealed changes in the SCN networks that occur in postnatal weeks 2-3. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by the vasoactive intestinal polypeptide and arginine vasopressin signaling depending on the period of postnatal development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.14318DOI Listing

Publication Analysis

Top Keywords

circadian clock
12
circadian system
12
postnatal development
12
circadian rhythms
12
circadian
9
scn
9
mammalian circadian
8
central clock
8
peripheral clocks
8
clock
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!