The relationship between the thickness of surface molecularly imprinted polymers (MIPs) and specific recognition performance of transferrin (Trf) as well as the quantitative relation between the grafting amount of Mn-ZnS room-temperature phosphorescence (RTP) quantum dots (QDs) (short for PQDs) and RTP signals for recognition of Trf was analyzed in this study. Based on analysis results, RTP protein mesoporous imprinting microspheres (SiO-PQDs-MIPs) with high specificity and strong interference resistance were developed using a mesoporous SiO nanomaterial that can create more three-dimensional precise recognition sites as the matrix and using PQDs with strong resistance to background fluorescence interference as the luminescent materials. A discriminatory analysis of Trf was realized by the phosphorescence quenching principle based on light quenching caused by the photoinduced electron transfer. The concentration range, limit of detection, relative standard deviation, and imprinting factor of Trf detection under pH 7.4 are 0.05-1.0 μM, 0.014 μM, 3.23%, and 3.09, respectively. Although the sensing signals of SiO-PQDs-MIPs for proteins are based on the phosphorescence of PQDs, they are particularly suitable for specific recognition and accurate quantitative detection of proteins in biological fluids. Research conclusions are expected to realize high-efficiency recognition of target proteins in actual biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b17772 | DOI Listing |
Lab Chip
January 2025
NASCENT Engineering Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.
Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
Mycotoxins are detectable in 60-80% of food crops, posing significant threats to human health and food security, and causing substantial economic losses. Most mitigation approaches focus on detecting mycotoxins with standard methods based on liquid chromatography coupled with mass spectrometry (LC-MS). Typical MS methods require extensive sample preparation and clean-up due to the matrix effect, followed by time-consuming LC separation, complicating the analysis process and limiting analytical throughput.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
The development of fluorescent sensors with high sensitivity and fast response times is attracting the interest of more and more researchers. Herein, dual-emission ratiometric molecularly imprinted fluorescent encoded microspheres were fabricated and applied for the fast detection of norfloxacin. Core-shell-structured imprinted polymers with ZIF-8 as the supporting core were obtained first and two quantum dots with green and red emission provided the fluorescent signal.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université CNRS, Paris, F-75005, France.
Herein, a photoinduced method is introduced for the synthesis of highly cross-linked and uniform polymer microspheres by atom transfer radical polymerization (ATRP) at room temperature and in the absence of stabilizers or surfactants. Uniform particles are obtained at monomer concentrations as high as 10% (by volume), with polymers being exempt from contamination by residual transition metal catalysts, thereby overcoming the two major longstanding problems associated with thermally initiated ATRP-mediated precipitation polymerization. Moreover, the obtained particles have also immobilized ATRP initiators on their surface, which directly enables the controlled growth of densely grafted polymer layers with adjustable thickness and a well-defined chemical composition.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2024
College of Chemistry and Chemical Engineering, Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
Background: The production of β-lactamases is the most prevalent resistance mechanism for β-lactam antibiotics in Gram-negative bacteria. Presently, over 4900 β-lactamases have been discovered, and they are categorized into hundreds of families. In each enzyme family, amino acid substitutions result in subtle changes to enzyme hydrolysis profiles; in contrast, certain conserved sequences retained by all of the family members can serve as important markers for enzyme family identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!