We describe different modes of dimerization of various α',γ-dioxyenone derivatives with potential applications to the synthesis of high-order securinega alkaloids. We learned that the relative stereochemical relationship between α'- and γ-hydroxyl groups of the α',γ-dihydroxyenone derivative determines the mode of dimerization. While cis-α',γ-dioxyenone 26 provided the Rauhut-Currier-type (RC-type) dimer 31 upon reaction with TBAF, trans-α',γ-dihydroxyenone 34 afforded dimeric tetrahydrofuran derivative 41 under the same reaction conditions. We also noticed that the protection of the γ-hydroxyl group drastically changes the reaction outcomes. While cis-α'-oxy-γ-OPiv-enone 49 did not show any reactivity in the presence of TBAF, trans-α'-hydroxy-γ-OPiv-enone 45 produced the RC-type dimer 46 under the same reaction conditions. Computational analysis revealed the detailed mechanism of the latter transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.8b02852DOI Listing

Publication Analysis

Top Keywords

synthesis high-order
8
high-order securinega
8
securinega alkaloids
8
rc-type dimer
8
dimer reaction
8
reaction conditions
8
dimerization strategies
4
strategies synthesis
4
alkaloids describe
4
describe modes
4

Similar Publications

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Metabolism and metabolites regulating hematopoiesis.

Curr Opin Immunol

January 2025

Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan; Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Energy metabolism of immune cells, such as glycolysis and mitochondrial activity, requires strict regulation. This is especially critical in the complex environment of the bone marrow (BM), where there is a need to both preserve the quiescence of hematopoietic stem cells (HSCs) and guarantee timed and effective lineage differentiation of the HSCs. Recent advances highlight the critical roles played by bioactive metabolites in regulating hematopoiesis.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Optimizing enzyme thermostability is crucial for protein science and industry, but combining multiple mutations can lead to inactivation, making traditional methods slow and inefficient.
  • Researchers developed an AI-driven method to enhance enzyme thermostability by efficiently recombining beneficial single-point mutations, using data from various mutant groups.
  • After two design rounds, the study achieved 50 combinatorial mutants with 100% success, including one exceptional mutant that significantly increased melting temperature and half-life, while also revealing complex interactions (epistasis) among mutations.
View Article and Find Full Text PDF

Assembly of the Skirt-Like Giant Molybdenum Blue Cluster {Mo} from Dimerization of {Mo} Featuring an Octameric Skeleton.

Inorg Chem

January 2025

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, No.30, Shuangqing Avenue, Beijing, Haidian 100084, China.

Cyclic compounds are appealing owing to their intrinsic porous structures and facile accessibility as building blocks (BBs) for fabricating high-order assemblies. Nevertheless, the modular synthesis of such molecular entities and their subsequent controlled assembly are still very challenging. Herein, we report the synthesis of a gigantic molybdenum blue (MB) wheel {Mo} (), featuring a skirt-shaped structure dimerized from {Mo}.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!