Phosphodiesterase 4 (PDE4) inhibitors with potential activities for CNS disorders provide a new therapeutic strategy for depression. To discover PDE4 inhibitors with anti-neuroinflammation activities, reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) models on our previous reported catecholic PDE4 inhibitors was built with a statistically significant cross-validated coefficient (q ), conventional coefficient (r ), and good predictive capabilities based on the molecular docking results, using comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods. Based on the analysis of CoMFA and CoMSIA contour maps, a series of 2-(3,4-dialkoxyphenyl)-2-(substituted pyridazin-3-yl) acetonitriles 16a-i was designed and synthesized. Among these compounds, compound 16a exhibited good inhibitory activities toward PDE4B1 and PDE4D7 with mid-nanomolar IC values and potential anti-neuroinflammation activity in BV-2 cells. Docking simulation of compound 16a in the PDE4 catalytic domain activity pocket revealed that compound 16a maybe assumed a "V-shaped" conformation, extending the side chain to S-pocket.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13438DOI Listing

Publication Analysis

Top Keywords

pde4 inhibitors
12
compound 16a
12
inhibitors anti-neuroinflammation
8
three-dimensional quantitative
8
quantitative structure-activity
8
structure-activity relationship
8
comparative molecular
8
analysis comfa
8
discovery 2-34-dialkoxyphenyl-2-substituted
4
2-34-dialkoxyphenyl-2-substituted pyridazin-3-ylacetonitriles
4

Similar Publications

Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is often regarded as the archetypal progressive fibrosing interstitial lung disease (ILD). The term "progressive pulmonary fibrosis" (PPF) generally describes progressive lung fibrosis in an individual with an ILD other than IPF. Both IPF and PPF are associated with loss of lung function, worsening dyspnea and quality of life, and premature death.

View Article and Find Full Text PDF

The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway.

Eur J Pharmacol

February 2025

The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China. Electronic address:

Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting.

View Article and Find Full Text PDF

Introduction: Fungi, including , may be a trigger or exacerbate psoriasis, especially in difficult to treat (DTT) areas, through the activation of IL-17/23 axis.

Methods: In this study, seventy patients with DDT psoriasis were enrolled to evaluate species and/or other opportunistic fungi colonization rate at baseline (T0) and the impact of apremilast on fungal load, clinical outcome, serum cytokine levels and biochemical serum profile of patients after 16, 24 and 52 weeks of treatment.

Results: In our population, 33 (47%) patients were colonized by spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!