Background: Transhumeral prostheses are worn by transhumeral amputees to replace the missing upper limb segment between shoulder and elbow. Prostheses should be able to function as a natural limb for the user to gain the full advantage of wearing a prosthesis. When performing reach-to-grasp and pointing motions by the upper limb, the hand is capable of adhering to a straight-line path with a bell-shaped velocity profile.
Aim: Aim was to develop a dynamic path-tracking method for transhumeral prostheses to gain the capability of adhering to a straight-line path.
Method: Proposed method uses model predictive controller (MPC) developed based on the kinematic model of the prosthesis. Moreover, a shoulder matcher is proposed to match actual shoulder pose with the predicted shoulder pose and to select the best joint angles for the prosthesis for a particular instance. Furthermore, the proposed method is capable of dynamically updating the path if the human performs shoulder motions, which are not as planned by the MPC.
Results: Several experiments are conducted to validate the proposed method. The proposed method is capable of taking a straight-line path similar to a natural human.
Conclusion: This paper proposed a dynamic path-tracking method based on a model predictive controller. The proposed method is capable of taking the prosthetic hand on a straight-line path, which is similar to a path taken by a natural human hand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcs.1980 | DOI Listing |
Bioanalysis
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.
Aims: Gastrointestinal stromal tumors (GISTs) account for about 80% of the mesenchymal tumors of the GI tract. About 5000-6000 patients are diagnosed in the United States (US) alone, and up to 14.5 cases per million discovered in Europe annually.
View Article and Find Full Text PDFGlob Health Res Policy
January 2025
Center for Public Health and Epidemic Preparedness and Response, Peking University, Haidian District, 38Th Xueyuan Road, Beijing, 100191, China.
Background: As population aging intensifies, it becomes increasingly important to elucidate the casual relationship between aging and changes in population health. Therefore, our study proposed to develop a systematic attribution framework to comprehensively evaluate the health impacts of population aging.
Methods: We used health-adjusted life expectancy (HALE) to measure quality of life and disability-adjusted life years (DALY) to quantify the burden of disease for the population of Guangzhou.
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
J Transl Med
January 2025
School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.
Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA.
Background: Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!