Two consecutive experiments were carried out to determine efficacy of Megasphaera elsdenii inoculation in alleviation of subacute ruminal acidosis (SARA). In the first experiment, SARA was induced by feeding corn- and wheat-based diets (20%, 40%, 60% and 80% of TMR, DM basis) in six ruminally cannulated heifers. Continuous pH was obtained using data loggers embedded in rumen. In corn (80%)- and wheat (60%)-based diets ruminal pH ranged from 5.2 to 5.6 for 7.77 and 5.93 hr. In the second experiment (5 day), M. elsdenii (200 ml; 2.4 x 10 cfu/ml) was inoculated during the first two days. During the SARA induction period, M. elsdenii and S. bovis in rumen liquor were more abundant in wheat-based feeding (7.97 and 8.77) than in corn-based feeding (7.06 and 7.95 per ml, log basis; p < 0.0001 for both). M. elsdenii inoculation increased total volatile fatty acids (VFA) concentration when corn-based diet was fed, whereas it decreased total VFA concentration when wheat-based diet was fed (p < 0.004). There was a decrease in the propionic acid proportion (24.04%-19.08%; p < 0.002), whereas no alteration in lactate and ammonia concentrations was observed. M. elsdenii inoculation increased protozoa count (from 5.39 to 5.55 per ml, log basis; p < 0.009) and decreased S. bovis count (from 9.18 to 7.95 per ml, log basis; p < 0.0001). The results suggest that M. elsdenii inoculation may help prevent SARA depending on dietary grain through altering rumen flora as reflected by a decrease in S. bovis count and an increase in protozoa count.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpn.13034 | DOI Listing |
Microb Pathog
January 2024
Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China. Electronic address:
Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
August 2023
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: Ginkgo biloba extract (GBE) is evidenced to be effective in the prevention and alleviation of metabolic disorders, including obesity, diabetes and fatty liver disease. However, the role of GBE in alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens and the underlying mechanisms remain to be elucidated. Here, we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota.
View Article and Find Full Text PDFJ Food Prot
September 2023
Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA. Electronic address:
Feedlot cattle commonly shed the foodborne pathogen Escherichia coli O157:H7 in their feces. Megasphaera elsdenii (ME), a lactic acid-utilizing bacterium, is commonly administered to cattle to avoid lactate accumulation in the rumen and to control ruminal acidosis. The impact of administering ME on foodborne pathogen prevalence, specifically E.
View Article and Find Full Text PDFFront Microbiol
December 2022
Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
Background: ST-segment elevation myocardial infarction (STEMI) in young male patients accounts for a significant proportion of total heart attack events. Therefore, clinical awareness and screening for acute myocardial infarction (AMI) in asymptomatic patients at a young age is required. The gut microbiome is potentially involved in the pathogenesis of STEMI.
View Article and Find Full Text PDFMicroorganisms
July 2022
Department of Animal Sciences and Industry, Kansas State University, 1530 Mid-Campus Drive North, Manhattan, KS 66506, USA.
Reducing Salmonella in cattle may mitigate the risk of transmission through the food chain. Megasphaera elsdenii (ME) is a microorganism found naturally in the bovine rumen that can be administered as a probiotic to mitigate ruminal acidosis. Understanding the impact of feeding ME to Salmonella populations in cattle was the objective of this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!