Introduction: Despite sterile barrier precautions and vigorous skin antisepsis, percutaneous insertion of intravenous catheters has been shown to result in attachment to the catheter surface of bacteria residing in the deep structures of the skin. Such attachment poses the risk of biofilm formation and eventual catheter-related bloodstream infection (CRBSI). This study was undertaken to assess whether the non-coated surface treatment of a unique catheter material (ChronoFlex C with BioGUARD™) could inhibit bacterial attachment and biofilm formation.
Methods: A novel in vitro model and fluorescence microscopy were used to compare two intravascular catheter materials with respect to bacterial attachment and biofilm formation. The control material was a commonly used polyurethane. The study material was a unique copolymer, treated so as to remove surface additives, alter hydrophobicity and create surface micro-patterning. Outcomes were assessed using both a membrane potential indicator and a cell death reporter with appropriate fluorescent channels. Thus, bacterial cells attached to the catheter surface (living and dead) were imaged without mechanical disruption.
Results: Both bacterial attachment and biofilm formation are significantly inhibited by the study catheter material. In fact, over 5 times more bacteria were able to attach and grow on the control polyurethane material than on the study material (=0.0020). Moreover, those few bacteria that were able to attach to the study material had a 1.5 times greater likelihood of dying.
Conclusion: Using a novel in vitro percutaneous catheter insertion model, ChronoFlex C with BioGUARD is proven to significantly inhibit bacterial attachment and biofilm formation as compared with a commonly used polyurethane catheter material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305250 | PMC |
http://dx.doi.org/10.2147/MDER.S183409 | DOI Listing |
Poult Sci
January 2025
Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.
View Article and Find Full Text PDFClin Exp Dent Res
February 2025
Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria.
Objectives: Considering the importance of patient-centered care, we aimed to evaluate the impact of systemic antibiotics on oral health-related quality of life during nonsurgical periodontal treatment. This controlled trial addresses a gap in understanding how systemic antibiotics influence patient-reported outcomes, focusing on Stage III periodontitis.
Materials And Methods: Sixty-one adults participated in a double-blind, randomized clinical trial, with participants divided into two groups: the test group, which received antibiotics, and the control group.
Environ Res
January 2025
, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia. Electronic address:
Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!