Purpose: This study evaluated the influence of thickness increment on degree of conversion (DC), Knoop microhardness (KHN), and polymerization-shrinkage stress (PSS) by photoelasticity of three dental composites.

Methods: For DC and KHN, 45 samples were prepared and divided into nine groups (n=5), according to composite (microhybrid [Filtek Z250 - Z250], bulk-fill flowable [SureFil SDR Flow - SDR], and nanohybrid composite [N'Durance - NDU]) and increment thickness (1, 1.5, and 3 mm). PSS was measured by photoelastic analysis. Composites were placed into a photo-elastic model cavity and light-cured. DC and KHN data were subjected to two-way ANOVA and Bonferroni post hoc test. PSS results were qualitatively evaluated through Kruskal-Wallis test.

Results: SDR showed the highest DC values. At top and bottom surfaces, the highest KHN was obtained by Z250. Z250 showed higher PSS than SDR in 1.5 mm increments. NDU showed higher PSS than SDR in 3 mm increments.

Conclusion: The bulk-fill composite demonstrated better DC and similar KHN and PSS in deeper layers compared to conventional composites. Bulk-fill composites may perform as well as conventional nanohybrid and microhybrid composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296192PMC
http://dx.doi.org/10.2147/CCIDE.S184660DOI Listing

Publication Analysis

Top Keywords

conventional composites
8
higher pss
8
pss sdr
8
pss
6
composites
5
khn
5
physical photoelastic
4
photoelastic properties
4
bulk-fill
4
properties bulk-fill
4

Similar Publications

Development of a Novel Electrochemical Immunosensor for Rapid and Sensitive Detection of Sesame Allergens Ses i 4 and Ses i 5.

Foods

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.

Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs.

View Article and Find Full Text PDF

Aluminum-carbon nanotube (Al-CNT) composites represent a cutting-edge class of materials characterized by their exceptional mechanical, thermal, and electrical properties, making them highly promising for aerospace, automotive, electronics, and energy applications. This review systematically examines the impact of various fabrication methods, including conventional powder metallurgy, diffusion and reaction coupling, as well as adhesive and reaction bonding on the microstructure and performance of Al-CNT composites. The analysis emphasizes the critical role of CNT dispersion, interfacial bonding, and the formation of reinforcing phases, such as AlC and AlO, in determining the mechanical strength, wear resistance, corrosion resistance, and thermal stability of these materials.

View Article and Find Full Text PDF

Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!