A flow cytometric analysis of macrophage- nanoparticle interactions in vitro: induction of altered Toll-like receptor expression.

Int J Nanomedicine

Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA,

Published: February 2019

Background: Nanoparticles exhibit unique physiochemical characteristics that provide the basis for their utilization. The diversity of potential and actual applications compels a thorough understanding regarding the consequences of their containment within the cellular environment.

Purpose: This paper presents a flow cytometric examination of the biologic effects associated with the internalization of citrate-buffered silver (Ag) nanoparticles (NP) by the murine macrophage cell line, RAW264.7.

Materials And Methods: Cells were cultured with varying concentrations of citrate-buffered Ag nanoparticle and analyzed for changes in cellular volume, fluorescence emissions, and surface receptor expression.

Results: Notable changes in side scatter (SSC) signal occurred following the phagocytosis of citrate-buffered Ag NP representative of the 10 nm, 50 nm, and 100 nm particle size by cultured RAW 264.7 cells. A characteristic associated with the internalization of all the citrated Ag NP sizes tested, was the detection of emitted infra-red and near-infrared wavelength emissions. This characteristic consistently permitted the detection of 10 nm, 50 nm, and 100 nm Ag NP particles internalized within the RAW cells by flow cytometry. A functional distinction between monocyte subsets within the RAW 264.7 cell line was noted as Ag NP are taken up by the F4/80+ subset of cells within the culture. Further, the internalization of Ag NP by the cells resulted in an increased cell surface expression of the Toll-like receptor (TLR) 3, but not TLR4.

Conclusion: Taken together, these results implicate the more mature macrophage in the ingestion of Ag NP; and an influence upon at least one of the Toll receptors present in macrophages following exposure to Ag NP. Further, our flow cytometric approach presents a potentially viable detection method for the identification of occult Ag NP material using an indicator cell line.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296684PMC
http://dx.doi.org/10.2147/IJN.S174184DOI Listing

Publication Analysis

Top Keywords

flow cytometric
12
toll-like receptor
8
associated internalization
8
raw 2647
8
cells
5
flow
4
cytometric analysis
4
analysis macrophage-
4
macrophage- nanoparticle
4
nanoparticle interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!