Titanium mesh plate (Ti mesh) used for bone augmentation inadvertently comes into contact with medical gloves during trimming and bending. We tested the hypotheses that glove contact degrades the biological capability of Ti mesh and that ultraviolet treatment (UV) can restore this capability. Three groups of Ti mesh specimens were prepared: as-received (AR), after glove contact (GC), and after glove contact followed by UV treatment. The AR and GC meshes were hydrophobic, but GC mesh was more hydrophobic. AR and GC meshes had significant amounts of surface carbon, and Si content was higher for GC mesh than for AR mesh. UV mesh was hydrophilic, and carbon and silicon content values were significantly lower in this group than in the AR and GC groups. The number, alkaline phosphatase activity, and mineralization ability of attached osteoblasts were significantly lower in the GC group than in the AR group and markedly higher in the UV group than in the AR group. In conclusion, glove contact caused chemical contamination of Ti mesh, which significantly reduced its bioactivity. UV treatment restored bioactivity in contaminated Ti mesh, which outperformed even the baseline Ti mesh.

Download full-text PDF

Source
http://dx.doi.org/10.2334/josnusd.17-0443DOI Listing

Publication Analysis

Top Keywords

glove contact
16
mesh
12
ultraviolet treatment
8
titanium mesh
8
mesh plate
8
contact medical
8
medical gloves
8
mesh mesh
8
lower group
8
group group
8

Similar Publications

Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.

View Article and Find Full Text PDF

Background: Delayed reactions to hyaluronic acid (HA) fillers have been reported following various immunologic and infectious triggers.

Aim: Herein, we describe cases of delayed immunologic reactions (DIRs) following HA-soft tissue augmentation fillers precipitated by triggers not previously described in the literature.  Patients: Case 1 describes a 57-year-old female with DIR to HA-filler following a motor vehicle accident in the marionette lines and nasolabial folds.

View Article and Find Full Text PDF

Highly Pathogenic Avian Influenza A(H5N1) Virus Infections in Humans.

N Engl J Med

December 2024

From the Influenza Division, Centers for Disease Control and Prevention, Atlanta (S.G., K.R., A.C., K.K., C.T.D., M.K.K., S. Ellington, A.M.M., A.B., J.R.B., M.B., M.A.J., M.R.-C., E.B., T.T.S., T.M.U., V.G.D., C.R., S.J.O.); California Department of Public Health, Richmond (E.L.M., S.Z., V.K., D.A.W.); the Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta (S.Z., C.D.); Colorado Department of Public Health and Environment, Denver (C.D., A.K., M.O.); Mid-Michigan District Health Department, Stanton (J.M.); Michigan Department of Health and Human Services, Lansing (S. Eckel); Missouri Department of Health and Senior Services, Jefferson City (J.G., G.T.); Benton-Franklin Health District, Kennewick, WA (S.K.); Washington State Department of Health, Tumwater (A.U.); and Texas Department of State Health Services, Austin (E.R.G., C.A.H.).

Background: Highly pathogenic avian influenza A(H5N1) viruses have caused widespread infections in dairy cows and poultry in the United States, with sporadic human cases. We describe characteristics of human A(H5N1) cases identified from March through October 2024 in the United States.

Methods: We analyzed data from persons with laboratory-confirmed A(H5N1) virus infection using a standardized case-report form linked to laboratory results from the Centers for Disease Control and Prevention influenza A/H5 subtyping kit.

View Article and Find Full Text PDF

Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception.

ACS Nano

December 2024

Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human-machine interactions of robots. However, traditional contact-electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact-electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range.

View Article and Find Full Text PDF

The use of personal protective equipment such as gloves and masks and protective measures such as repeated contact of hands with water and skin disinfectants are recommended to prevent the spread of Corona virus disease 2019 (COVID-19). However, these hygiene measures may cause skin injury and skin diseases, including superficial-cutaneous-fungal infections (SCFIs). The aim of this study was to determine the prevalence and comparison of SCFIs before and during the COVID-19 pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!