Background: The majority of the human genome comprises noncoding sequences, which are in part transcribed as long noncoding RNAs (lncRNAs). lncRNAs exhibit multiple functions, including the epigenetic control of gene expression. In this study, the effect of the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) on atherosclerosis was examined.

Methods: The effect of MALAT1 on atherosclerosis was determined in apolipoprotein E-deficient (Apoe) MALAT1-deficient (Malat1) mice that were fed with a high-fat diet and by studying the regulation of MALAT1 in human plaques.

Results: Apoe Malat1 mice that were fed a high-fat diet showed increased plaque size and infiltration of inflammatory CD45 cells compared with Apoe Malat1 control mice. Bone marrow transplantation of Apoe Malat1 bone marrow cells in Apoe Malat1 mice enhanced atherosclerotic lesion formation, which suggests that hematopoietic cells mediate the proatherosclerotic phenotype. Indeed, bone marrow cells isolated from Malat1 mice showed increased adhesion to endothelial cells and elevated levels of proinflammatory mediators. Moreover, myeloid cells of Malat1 mice displayed enhanced adhesion to atherosclerotic arteries in vivo. The anti-inflammatory effects of MALAT1 were attributed in part to reduction of the microRNA miR-503. MALAT1 expression was further significantly decreased in human plaques compared with normal arteries and was lower in symptomatic versus asymptomatic patients. Lower levels of MALAT1 in human plaques were associated with a worse prognosis.

Conclusions: Reduced levels of MALAT1 augment atherosclerotic lesion formation in mice and are associated with human atherosclerotic disease. The proatherosclerotic effects observed in Malat1 mice were mainly caused by enhanced accumulation of hematopoietic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029015DOI Listing

Publication Analysis

Top Keywords

malat1 mice
24
malat1
16
apoe malat1
16
bone marrow
12
long noncoding
8
mice
8
mice fed
8
fed high-fat
8
high-fat diet
8
malat1 human
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Long non-coding RNA fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and β-catenin-OPG/Jagged1 pathway.

Elife

December 2024

Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States.

The IncRNA was initially believed to be dispensable for physiology due to the lack of observable phenotypes in knockout (KO) mice. However, our study challenges this conclusion. We found that both KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis.

View Article and Find Full Text PDF

Resveratrol promotes mitophagy via the MALAT1/miR-143-3p/RRM2 axis and suppresses cancer progression in hepatocellular carcinoma.

J Integr Med

November 2024

National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China. Electronic address:

Objective: Resveratrol (Res) is a promising anticancer drug against hepatocellular carcinoma (HCC), but whether its anti-HCC effects implicate mitophagy remains unclear. Therefore, we aimed to explore the specific role of Res in mitophagy and the related mechanisms during the treatment of HCC.

Methods: HepG2 cells and tumor-grafted nude mice were used to investigate the effects of low-, middle- and high-dose of Res on HCC progression and mitophagy in vitro and in vivo, respectively.

View Article and Find Full Text PDF

5-methylcytosine methylation of MALAT1 promotes resistance to sorafenib in hepatocellular carcinoma through ELAVL1/SLC7A11-mediated ferroptosis.

Drug Resist Updat

January 2025

Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000,  PR China; Shenzhen Traditional Chinese Medicine Oncology Medical Center, Shenzhen, Guangdong 518000, PR China. Electronic address:

Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) play a crucial role in sorafenib resistance in hepatocellular carcinoma (HCC), and lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a dysregulated lncRNA in sorafenib-resistant HCC cells. However, the underlying regulatory mechanisms of MALAT1 in sorafenib-resistant HCC cells remain unclear. In the present study, we demonstrated that 5-methylcytosine (mC) methylation catalyzed by NSUN2 and ALYREF contributed to the RNA stability and upregulation of MALAT1.

View Article and Find Full Text PDF

Obesity promotes metabolic diseases such as type 2 diabetes and cardiovascular disease. PKCδI is a serine/threonine kinase which regulates cell growth, differentiation, and survival. Caspase-3 cleavage of PKCδI releases the C-terminal catalytic fragment (PKCδI_C), which promotes inflammation and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!