Aberrantly activated Wnt signaling pathway and dysregulation of extracellular antagonists of Wnt signaling have been revealed in pulmonary fibrosis. In this study we evaluated the expression of secreted frizzled-related proteins (SFRPs) and their aberrant promoter methylation to investigate the involvement of epigenetic regulation in pulmonary fibrosis. The pulmonary fibrosis induced by intratracheal injection of bleomycin (BLM) into mice was adopted. The transcription and relative protein expression of SFRPs were detected at Day 7 (D7), D14, and D21. DNA methylation analysis was performed by methylation-specific polymerase chain reaction (MSP). A DNA methyltransferase (DNMT) inhibitor (5-aza-2'-deoxycytidine; 5-aza) was used for demethylation and the relative β-catenin expression levels were measured to assess overactivity of the canonical Wnt signaling pathway. The transcription and protein expression of SFRP1 significantly decreased at D14 and D21, whereas the transcription and protein expression of SFRP4 significantly decreased at D7 and stayed downregulated until D21. The significantly hypermethylated promoters of SFRP1 and SFRP4 resulted in impaired transcription and decreased expression during pulmonary fibrosis in mice. Besides, reactivation of SFRP1 and SFRP4 by 5-aza reduced β-catenin mRNA and protein expression in vivo and in vitro. Animal experiments confirmed that 5-aza could significantly alleviate bleomycin-induced pulmonary fibrosis in mice. Thus, changes of promoter hypermethylation might downregulate SFRP1 and SFRP4 at different stages of pulmonary fibrosis, and the finding supports the usefulness of DNMT inhibitors, which might effectively reverse activation of β-catenin and reduce pulmonary fibrosis in mice. These data provide a possible new direction in the research on pulmonary fibrosis treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.12.041DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
36
fibrosis mice
16
protein expression
16
wnt signaling
12
sfrp1 sfrp4
12
pulmonary
9
fibrosis
9
expression
8
decreased expression
8
secreted frizzled-related
8

Similar Publications

Pulmonary fibrosis as the sole manifestation of anti-Ku antibody positivity in the absence of myositis: A case report.

Respir Med Case Rep

January 2025

Department of Rheumatology of Lucania - UOSD of Rheumatology, "Madonna delle Grazie" Hospital, Matera, Italy.

Background: Anti-Ku antibodies are autoantibodies directed against the Ku protein complex involved in DNA repair. They are typically associated with overlap syndromes featuring polymyositis and systemic sclerosis. Isolated pulmonary involvement without myositis is exceedingly rare.

View Article and Find Full Text PDF

Anti-glomerular basement membrane disease is a rare small vessel vasculitis caused by the deposition of immunoglobulin G (IgG) autoantibodies in the basement membrane of glomerular capillaries and lung alveoli, leading to rapidly progressive renal failure and/or alveolar hemorrhage. We report the case of an 83-year-old female patient presenting with uremic symptoms, rapidly progressive kidney failure, and a high titer of anti-glomerular basement membrane antibodies. Given the urgent need for kidney replacement therapy, the substantial fibrosis and glomerular scarring observed in the kidney biopsy suggesting a chronic process, and the absence of pulmonary involvement, neither immunosuppressive treatment nor plasmapheresis was initiated, since a low likelihood of a favorable response to these interventions was expected.

View Article and Find Full Text PDF

Background Interstitial lung diseases (ILDs) are a group of non-infectious diseases characterized by interstitial inflammation and fibrosis on histological examination. Gastroesophageal reflux disease (GERD) is common in this patient population, but whether there is a causal or coincidental relationship is not yet clear. It still remains unsettled how to diagnose GERD, and the role of different treatment modalities for GERD, in these lung disorders.

View Article and Find Full Text PDF

Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. It is characterized by inflammation and fibrosis in the lung parenchyma and interstitium. Given its poor prognosis and limited treatment options, understanding the underlying molecular mechanisms is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!