Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/β-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412023 | PMC |
http://dx.doi.org/10.1111/jne.12681 | DOI Listing |
Hear Res
January 2025
Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom.
The cortical tracking of the acoustic envelope is a phenomenon where the brain's electrical activity, as recorded by electroencephalography (EEG) signals, fluctuates in accordance with changes in stimulus intensity (the acoustic envelope of the stimulus). Understanding speech in a noisy background is a key challenge for people with hearing impairments. Speech stimuli are therefore more ecologically valid than clicks, tone pips, or speech tokens (e.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Neuroscience, Northwestern University, 303 East Chicago Ave, Chicago, Illinois, 60611, UNITED STATES.
Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway.
Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.
View Article and Find Full Text PDFBrain
January 2025
Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06100, Ankara, Turkey.
Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.
View Article and Find Full Text PDFNeurology
February 2025
Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Finland.
Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!