Adipocytes suppress differentiation of muscle cells in a co-culture system.

Anim Sci J

Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Published: March 2019

The development of adipose tissue in skeletal muscle is important for improving meat quality. However, it is still unclear how adipocytes grow in the proximity of muscle fibers. We hypothesized that adipocytes would suppress muscle cell growth so as to grow dominantly within muscle. In this study, we investigated the effect of adipocytes on the differentiation of muscle cells in a co-culture system. The fusion index of C2C12 myoblasts co-cultured with 3T3-L1 adipocytes was significantly lower than that of the control. The expression of myogenin and myosin heavy chain in C2C12 muscle cells co-cultured with 3T3-L1 adipocytes was significantly lower than in the control. Furthermore, the expression of Atrogin-1 and MuRF-1 was higher in C2C12 muscle cells co-cultured with 3T3-L1 adipocytes than the control. These results suggest that 3T3-L1 adipocytes suppress the differentiation of C2C12 myoblasts. In addition, 3T3-L1 adipocytes induced the expression and secretion of IL-6 in C2C12 muscle cells. The fusion index and myotube diameter were higher in C2C12 muscle cells co-cultured with 3T3-L1 cells in medium containing IL-6-neutralizing antibody than the control. Taken together, there is a possibility that adipocyte-induced IL-6 expression in muscle cells could be involved in the inhibition of muscle cell differentiation via autocrine.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13145DOI Listing

Publication Analysis

Top Keywords

muscle cells
28
3t3-l1 adipocytes
20
co-cultured 3t3-l1
16
c2c12 muscle
16
adipocytes suppress
12
muscle
12
cells co-cultured
12
adipocytes
9
suppress differentiation
8
differentiation muscle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!