Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent findings have demonstrated that numerical order processing (i.e., the application of knowledge that numbers are organized in a sequence) constitutes a unique and reliable predictor of arithmetic performance. The present work investigated two central questions to further our understanding of numerical order processing and its relationship to arithmetic. First, are numerical order sequences processed without conscious monitoring (i.e., automatically)? Second, are automatic and intentional ordinal processing differentially related to arithmetic performance? In the first experiment, adults completed a novel ordinal congruity task. Participants had to evaluate whether number triplets were arranged in a correct (e.g., ) physical order or not (e.g., ). Results of this experiment showed that participants were faster to decide that the physical size of ascending numbers was in-order when the physical and numerical values were congruent compared to when they were incongruent (i.e., congruency effect). In the second experiment, a new group of participants was asked to complete an ordinal congruity task, an ordinal verification task (i.e., are the number triplets in a correct order or not) and an arithmetic fluency test. Results of this experiment revealed that the automatic processing of ascending numerical order is influenced by the numerical distance of the numbers. Correlation analysis further showed that only reaction time measures of the intentional ordinal verification task were associated with arithmetic performance. While the findings of the present work suggest that ascending numerical order is processed automatically, the relationship between numerical order processing and arithmetic appears to be limited to the intentional manipulation of numbers. The present findings show that the mental engagement of verifying the order of numbers is a crucial factor for explaining the link between numerical order processing and arithmetic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actpsy.2018.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!