GEnome-scale Network REconstructions (GENREs) mathematically describe metabolic reactions of an organism or a specific cell type. GENREs can be used with a number of constraint-based reconstruction and analysis (COBRA) methods to make computational predictions on how a system changes in different environments. We created a simplified GENRE (referred to as iSIM) that captures central energy metabolism with nine metabolic reactions to illustrate the use of and promote the understanding of GENREs and constraint-based methods. We demonstrate the simulation of single and double gene deletions, flux variability analysis (FVA), and test a number of metabolic tasks with the GENRE. Code to perform these analyses is provided in Python, R, and MATLAB. Finally, with iSIM as a guide, we demonstrate how inaccuracies in GENREs can limit their use in the interrogation of energy metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2018.12.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!