In retinoblastoma research tumor-derived cell lines remain an important model to investigate tumorigenesis and new therapy options, due to limited tumor material and lack of adequate animal models. A panel of 10 retinoblastoma cell lines was characterized with respect to mutation, methylation and expression of RB1 and MYCN. These established retinoblastoma cell lines represent the most frequent types of RB1 inactivation and together with the MYCN amplification status, three classes can be distinguished: RB1/MYCN, RB1/MYCN and RB1/MYCN. MYCN amplification was identified in five cell lines, whereby two of them, RB522 and RB3823, harbor no aberration in RB1. Targeted sequencing of 160 genes often mutated in cancer identified only few variants in tumor-associated genes other than in RB1. None of these variants was recurrent. mRNA expression analyses of retinal markers, cell cycle regulators and members of the TP53 signaling pathway revealed a high variability between cell lines but no class-specific differences. The here presented thorough validation of retinoblastoma cell lines, including microsatellite analysis for cell line authentication, provides the basis for further in vitro studies on retinoblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2018.12.018 | DOI Listing |
BMC Res Notes
December 2024
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.
Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.
Clin Epigenetics
December 2024
Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFJ Transl Med
December 2024
Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.
View Article and Find Full Text PDFJ Transl Med
December 2024
Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China.
Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!