In this work, a new but excellent donor block dithienothiapyran (DTTP) was developed for constructing highly efficient wide band gap copolymer donors. Compared to dithienopyran (DTP), DTTP features weaken electron-donating ability and more planar-conjugated backbones. Polymer-fluorinated benzotriazole (FBTA) based on DTTP exhibits lower highest occupied molecular orbital level (-5.30 vs -5.21 eV), higher molar extinction coefficient (1.54 × 10 vs 8.65 × 10 M cm), and better crystallinity than -FBTA based on DTP, thus producing a higher device performance of 10.51% in binary blend nonfullerene polymer solar cells (NF-PSCs) blended with IT-M. To improve the absorption strength of PDTTP-FBTA: devices in the shorter wavelength range and further optimize the blend morphology, a small molecule of , which has strong absorption at short wavelength (300-600 nm), was incorporated. Finally, the performance of the ternary blends was successfully enhanced to 11.57% and a very high fill factor of 76.5%. Our work provided a new but excellent donor block for building high-performance conjugated copolymers to achieve highly efficient NF-PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b18493 | DOI Listing |
Biomaterials
December 2024
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:
Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, 117585, Singapore, SINGAPORE.
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO₂ as a feedstock.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
We herein report a microwave-assisted Buchwald-Hartwig double amination reaction to synthesize potential thermally activated delayed fluorescence compounds, forming C(sp)-N bonds between donor and acceptor units. Our approach reduces reaction times from 24 h to 10-30 min and achieves moderate to excellent yields, outperforming conventional heating methods. The method is compatible with various aryl bromides and secondary amines, including phenoxazine, phenothiazine, acridine, and carbazole.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China. Electronic address:
Donor-acceptor (D-A) conjugated polymers have been widely reported as promising photocatalysts for organic conversion. However, achieving excellent photocatalytic performance still relies on the rational design of molecular structures and the careful selection of appropriate building blocks. In this study, we designed two D-A type conjugated porous polymers (CPPs) using 2,7,12-tribromo-5,5,10,10,15,15-hexamethyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene (Tx) as the donor unit and two 1,3,5-triazine-based derivatives, namely 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT), as the acceptor units.
View Article and Find Full Text PDFJACS Au
December 2024
Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!