Ephemeral gully erosion is an important erosion type in hilly and gully regions of Loess Plateau. While previous studies mainly focused on ephemeral gullies in agricultural land, little is known about the effects of naturally restored grassland on ephemeral gully erosion. In this study, taking the bare ephemeral gullies as the baseline, we conducted in-situ flushing tests to explore runoff and sediment yield characteristics and erosion mechanism of grassland ephemeral gullies under the runoff conditions of 5, 10, 15, 20 and 25 L·min. Compared to the bare ephemeral gully, average flow velocity, stable runoff rate, Reynolds number and Froude number of grassland ephe-meral gullies was reduced by 25.4%-67.3%, 8.4%-26.6%, 54.9%-80.5%, 18.6%-65.1%, respectively, whereas resistance coefficient was increased by 0.09-7.18 folds. Compared to the bare ephemeral gully, the maximum sediment yield rate, stable sediment yield rate, average sediment yield rate of grassland ephemeral gullies was decreased by 55.1%-90.9%, 61.8%-95.4%, and 64.8%-92.4%, respectively. The sediment yield reduction benefit of the naturally restored grassland under the discharge flow rate of 5-25 L·min could reach 65.9%-88.8%, which decreased with increasing discharge flow rate. Compared to the bare ephemeral gully, average stream power and average shear stress of grassland ephemeral gullies was reduced by 54.9%-80.5% and 12.4%-51.1%, respectively, whereas the critical stream power and critical shear stress was increased by 1.43 folds and 33.7%, respectively. The average sediment yield of grassland and bare ephemeral gullies was signifi-cantly linearly related to average stream power and shear stress. Naturally restored grassland significantly increased the erosion resistance and reduced runoff erosion potential of ephemeral gullies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201812.016 | DOI Listing |
J Environ Manage
December 2024
National Sedimentation Laboratory, USDA-Agricultural Research Service, MS, USA.
Conservation practices have been recognized as an important mitigation tool to reduce soil loss and sediment transport from agricultural fields. Multiple conservation structures and farming practices have been proposed to target erosional processes with varying results of sediment trapping efficiency. The quantification of their performance at the watershed scale when multiple integrated and spatiotemporal varying processes occur, remains a challenge.
View Article and Find Full Text PDFJ Environ Manage
January 2023
The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia.
Tile-back type slopes comprise ephemeral gullies (EGs) and hillslopes; they are a unique and widely distributed micro-landform in the Loess Plateau region of China. Gully erosion from these landforms is a serious issue, but the micro-landform makes the erosion process and its estimation complex. Quantifying soil erosion processes and their distribution characteristics at different positions on tile-back type slopes will provide a clearer picture for ecological restoration to control further soil degradation.
View Article and Find Full Text PDFJ Environ Manage
September 2020
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, 20688, USA.
Gully development following agricultural land use change is well documented in many tropical developing countries. However, the impact of specific agricultural intensification practices on gully formation, such as the construction of unpaved roads and contour terracing, remains poorly understood. We studied gully formation in catchments with sugarcane agriculture to inform sustainable agricultural management in Brazil.
View Article and Find Full Text PDFSci Total Environ
October 2020
Dept. of Civil Engineering, University of Kentucky, United States of America.
Integrating connectivity theory within watershed modelling is one solution to overcome spatial and temporal shortcomings of sediment transport prediction, and Part I and II of these companion papers advance this overall goal. In Part II of these companion papers, we investigate sediment flux via connectivity formula discretized over many catchments and then integrated via sediment routing; and we advance model evaluation technology by using hysteresis of sensor data. Model evaluation with hysteresis indices provides nearly a 100% increase in model statistics.
View Article and Find Full Text PDFSci Total Environ
October 2020
College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
As the most serious form of soil erosion, gully erosion can be triggered by individual high-intensity rainfall events. In this study, a total of 369 small catchments in 24 sites were sampled to investigate the relationship between rainfall and gully erosion on hillslopes and to study the impacts of vegetation restoration following heavy rainstorms in the central Loess Plateau, China. A total of 280 newly formed gullies on hillslopes were identified by comparing pre-storm Google Earth images and post-storm unmanned aerial vehicle (UAV) images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!