Fish pectoral fins move in complex ways, acting as control surfaces to affect force balance during swimming and maneuvering. Though objectively less dynamic than their actinopterygian relatives, shark pectoral fins undergo complex conformational changes and movements during maneuvering. Asynchronous pectoral fin movement is documented during yaw turning in at least two shark species but the three-dimensional (3D) rotation of the fin about the body axes is unknown. We quantify the 3D actuation of the pectoral fin base relative to the body axes. We hypothesized that Pacific spiny dogfish rotate pectoral fins with three degrees of freedom relative to the body during volitional turning. The pectoral fin on the inside of the turn is consistently protracted, supinated and depressed. Additionally, turning angular velocity increased with increasing fin rotation. Estimated drag on the fin increased and the shark decelerated during turning. Based on these findings, we propose that Pacific spiny dogfish uses drag-based turning during volitional swimming. Post-mortem muscle stimulation revealed depression, protraction and supination of the pectoral fin through stimulation of the ventral and cranial pterygoideus muscles. These data confirm functional hypotheses about pectoral fin musculature and suggest that Pacific spiny dogfish actively rotate pectoral fins to facilitate drag-based turning.This article has an associated First Person interview with the first author of the paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361209 | PMC |
http://dx.doi.org/10.1242/bio.037291 | DOI Listing |
Zookeys
January 2025
Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA.
Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.
Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.
The deep-sea demersal fish fauna is characterized by a prevalence of elongated-body forms with long tapering tails. Using baited camera landers at depths of 4500-6300 m in the Pacific Ocean, we observed multiple instances of backward swimming using reverse undulation of the slender body in four species: the cutthroat eel Ilyophis robinsae, abyssal grenadier Coryphaenoides yaquinae, and cusk-eels Bassozetus sp. and Barathrites iris.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.
Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).
View Article and Find Full Text PDFJ Fish Biol
January 2025
Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!