This article addresses the impact of forward error correction when applied to the report channel transmissions of a centralized decision fusion cooperative spectrum sensing scheme designed to detect idle ofdma subchannels. The ofdma signal is transmitted over slow frequency-selective multipath Rayleigh fading channels and sensed using the maximum eigenvalue detection test statistic. The decisions on the OFDMA subchannel occupancy are transmitted to a fusion center over report channels represented by a shadowed fading model combining a three-dimensional spatially correlated shadowing with a slow and flat multipath Rayleigh fading. Binary bch and Repetition codes are used to protect these decisions. Results show that shadowing correlation severely deteriorates the overall spectrum sensing performance and that error correction may not be able to protect the report channel transmissions. It can be even worse with respect to the system performance especially at low signal-to-noise regimes. In the situations in which error correction is effective, the Repetition code is capable of outperforming the BCH, meaning that the diversity gain may be more relevant than the coding gain when the spectrum sensing decisions are subjected to correlated shadowing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339040 | PMC |
http://dx.doi.org/10.3390/s19010051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!