Methylene blue (MB) is a widely used dye and photodynamic therapy (PDT) agent that can produce reactive oxygen species (ROS) after light exposure, triggering apoptosis. However, it is hard for the dye to penetrate through the cell membrane, leading to poor cellular uptake; thus, drug carriers, which could enhance the cellular uptake, are a suitable solution. In addition, the defective vessels resulting from fast vessel outgrowth leads to an enhanced permeability and retention (EPR) effect, which gives nanoscale drug carriers a promising potential. In this study, we applied poly(12-(methacryloyloxy)dodecyl phosphorylcholine), a zwitterionic polymer-lipid, to self-assemble into liposomes and encapsulate MB (MB-liposome). Its properties of high stability and fast intracellular uptake were confirmed, and the higher in vitro ROS generation ability of MB-liposomes than that of free MB was also verified. For in vivo tests, we examined the toxicity in mice via tail vein injection. With the features found, MB-liposome has the potential of being an effective PDT nano agent for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359461PMC
http://dx.doi.org/10.3390/nano9010014DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
cellular uptake
8
drug carriers
8
methylene-blue-encapsulated liposomes
4
liposomes photodynamic
4
therapy nano
4
nano agents
4
agents breast
4
breast cancer
4
cancer cells
4

Similar Publications

Emerging engineered nanozymes: current status and future perspectives in cancer treatments.

Nanoscale Adv

January 2025

Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China

Composite nanozymes are composed of enzymes with similar or different catalytic capabilities and have higher catalytic activity than a single enzyme. In recent years, composite nanozymes have emerged as novel nanomaterial platforms for multiple applications in various research fields, where they are used to produce oxygen, consume glutathione, or produce toxic reactive oxygen species (ROS) for cancer therapy. The therapeutic approach using composite nanozymes is known as chemo-dynamic therapy (CDT).

View Article and Find Full Text PDF

The morbidity of oral disorders, including gingivitis, caries, endodontic-periodontal diseases, and oral cancer, is relatively high globally. Pathogenic cells are the root cause of many oral disorders, and oral therapies depend on eradicating them. Photodynamic therapy (PDT) has been established as a potential and non-invasive local adjuvant treatment for oral disorders.

View Article and Find Full Text PDF

This study is the first to use photodynamic therapy (PDT) mediated by curcumin and blue light for the treatment of recurrent herpes labialis. According to our study, PDT effectively accelerated lesion healing and reduced its recurrence. PDT may represent a promising, safe, and cost-effective treatment option for this challenging disease.

View Article and Find Full Text PDF

A juxtapapillary retinal capillary hemangioma (JRCH) is a rare vascular hamartoma located on the optic nerve head or adjacent region. While often associated with von Hippel-Lindau (VHL) disease, JRCHs can also occur as an isolated condition, presenting unique therapeutic challenges and risks of visual impairment. We report a case of a 50-year-old Malay gentleman with diabetes mellitus who presented with a non-progressive superior visual field defect in his left eye for three months.

View Article and Find Full Text PDF

A simple co-assembly strategy to control the dimensions of nanoparticles for enhanced synergistic therapy.

J Colloid Interface Sci

January 2025

Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237 PR China. Electronic address:

Despite phthalocyanine has excellent photodynamic and photothermal effects as a photosensitizer and photothermal agent, hydrophobicity and aggregation limits its biological application. In this paper, phthalocyanine-cyanine co-assembled nanoparticles were designed to modulate the dimensions and morphology by introducing water-soluble cyanine. The cyanine had the ability to transform the nanomaterials from microrods to nanospheres, thus successfully constructing photoactivated nanomedicines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!