The performance of helmet prototypes fabricated from acrylonitrile butadiene styrene composites filled with oil palm empty fruit bunch fibers was evaluated. The fibers were produced using a milling procedure, while the composites were fabricated using a single-screw extrusion. The physical characteristics of the produced fibers, which are water content, size, and density, were investigated. In addition, the mechanical properties of the produced helmets, including shock absorption, yield stress, frequency, and head injury criterion (HIC), were examined. The impact strength of the produced helmets increases with the rise of filler content. In addition, the helmets were also able to withstand a considerable pressure such that the transmitted pressure was far under the maximum value acceptable by the human skull. The present work also found that HICs exhibited by the investigated helmet prototypes fulfill all the practical guidelines as permitted by the Indonesian government. In terms of novelty, such innovation can be considered the first invention in Indonesia since the endorsement of the use of motorcycle helmets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337143 | PMC |
http://dx.doi.org/10.3390/ma12010034 | DOI Listing |
Cureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Commun Med (Lond)
June 2024
Department of Neuroscience, West Virginia University, P.O. Box 9303, Morgantown, WV, USA.
Background: Mobile upright PET devices have the potential to enable previously impossible neuroimaging studies. Currently available options are imagers with deep brain coverage that severely limit head/body movements or imagers with upright/motion enabling properties that are limited to only covering the brain surface.
Methods: In this study, we test the feasibility of an upright, motion-compatible brain imager, our Ambulatory Motion-enabling Positron Emission Tomography (AMPET) helmet prototype, for use as a neuroscience tool by replicating a variant of a published PET/fMRI study of the neurocorrelates of human walking.
Ann Biomed Eng
October 2024
Department of Biomedical Engineering and Mechanics, Virginia Tech, 120 Kelly Hall, 325 Stanger Street MC 0298, Blacksburg, VA, 24061, USA.
Helmet-testing headforms replicate the human head impact response, allowing the assessment of helmet protection and injury risk. However, the industry uses three different headforms with varying inertial and friction properties making study comparisons difficult because these headforms have different inertial and friction properties that may affect their impact response. This study aimed to quantify the influence of headform coefficient of friction (COF) and inertial properties on oblique impact response.
View Article and Find Full Text PDFJ Biomech Eng
March 2024
School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
Head impacts in bicycle accidents are typically oblique to the impact surface and transmit both normal and tangential forces to the head, causing linear and rotational head kinematics, respectively. Traditional expanded polystyrene (EPS) foam bicycle helmets are effective at preventing many head injuries, especially skull fractures and severe traumatic brain injuries (TBIs) (primarily from normal contact forces). However, the incidence of concussion from collisions (primarily from rotational head motion) remains high, indicating need for enhanced protection.
View Article and Find Full Text PDFIEEE J Electromagn RF Microw Med Biol
June 2023
Worcester Polytechnic Institute, Worcester, MA USA 01609.
On-body antennas for use in microwave imaging (MI) systems can direct energy around the body instead of through the body, thus degrading the overall signal-to-noise ratio (SNR) of the system. This work introduces and quantifies the usage of modern metal-backed RF absorbing foam in conjunction with on-body antennas to dampen energy flowing around the body, using both simulations and experiments. A head imaging system is demonstrated herein but the principle can be applied to any part of the body including the torso or extremities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!