To assess the risk posed by meat consumption to the Fiji and Pacific populace, the present study reports nitrate and nitrite in meat. Twelve commercially available meat products, with a total of 210 fresh and processed meat samples, were analysed for nitrate and nitrite by an optimised RP-HPLC technique with isocratic elution using n-octylamine in 20.0% methanol at pH 6.60. The nitrate content in the meat samples ranged from 0.00 to 124 mg kg whereas the nitrite ranged from 0.00 to 164 mg kg. The study shows that the nitrate and nitrite contents of meat samples in Fiji were below the maximum level proposed by European Union legislation but above the limit set by Food Standards Australia and New Zealand (FSANZ). The estimated dietary intake of nitrate and nitrite was calculated from a 24-h diet recall study as well as from Fiji's food balance sheets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.11.081 | DOI Listing |
Bioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois, USA.
Multiple sclerosis (MS) is a chronic neurological condition resulting in decreased aerobic capacity (peak VO). The hemodynamic responses to peak exercise in MS are unknown. Further, it is unknown if the hemodynamic responses are due to disease or fitness.
View Article and Find Full Text PDFJ Toxicol
December 2024
Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.
Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.
View Article and Find Full Text PDFChem Sci
November 2024
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University Tianjin 300350 China
The excessive accumulation of nitrate/nitrite (NO ) in surface and groundwater has severely disrupted the global nitrogen cycle and jeopardized public health. The electrochemical conversion of NO to ammonia (NH) not only holds promise for ecofriendly NO removal, but also provides a green alternative to the energy-intensive Haber-Bosch process for NH production. Recently, in addition to the electrocatalyst design explosion in this field, many innovative valorization systems based on NO -to-NH conversion have been developed for generating energy and expanding the range of value-added products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!