Pin1 inhibition reverses the acquired resistance of human hepatocellular carcinoma cells to Regorafenib via the Gli1/Snail/E-cadherin pathway.

Cancer Lett

Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China; Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Published: March 2019

Hepatocellular carcinoma (HCC) is the second leading cancer death because of its high metastasis and drug resistance. Regorafenib was newly approved by FDA for HCC treatment, but its resistance is not understood. The unique isomerase Pin1 is critical for HCC development, but its role in metastasis and drug resistance is unknown. Here we generated Regorafenib-resistant HCC cells and found that they exhibited enhanced tumor invasion and metastasis in vitro and in vivo, and elevated Pin1 levels. Furthermore, Pin1 was highly overexpressed and closely related to the EMT in human HCC tissues. Depletion or overexpression of Pin1 correspondingly inhibited or promoted HCC cell migration and invasion, with altered expression of EMT-related molecules, E-cadherin and Snail. Significantly, Pin1 interacted with Gli1, a regulator of the EMT, and silencing Gli1 partly blocked Pin1-induced EMT in HCC cells. Moreover, genetic or chemical Pin1 inhibition reversed Regorafenib resistance of HCC with reducing EMT, migration, invasion and metastasis in vitro and in vivo. These results reveal a novel molecular mechanism underlying Regorafenib resistance in HCC, and also provide first evidence that Pin1 inhibitors offer an attractive strategy for treating Regorafenib-resistant HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492280PMC
http://dx.doi.org/10.1016/j.canlet.2018.12.010DOI Listing

Publication Analysis

Top Keywords

hcc
10
pin1
8
pin1 inhibition
8
hepatocellular carcinoma
8
metastasis drug
8
drug resistance
8
regorafenib-resistant hcc
8
hcc cells
8
invasion metastasis
8
metastasis vitro
8

Similar Publications

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Comparison of C-Acetate and F-FDG PET/CT for Immune Infiltration and Prognosis in Hepatocellular Carcinoma.

Cancer Sci

January 2025

Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.

Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

: Examinations of procalcitonin (PCT) and Ki-67 expression levels in hepatocellular carcinoma (HCC) patients who have undergone liver transplantation (LT) through immunohistochemical analyses of tumor tissue may reveal the biological characteristics of the tumor, thus informing the selection of HCC patients for LT. : Hepatectomy specimens from 86 HCC patients who underwent LT were obtained and analyzed immunohistochemically for the expression of PCT and Ki-67. The percentage and intensity of PCT staining, as well as the percentage of Ki-67 expression, were assessed for each patient.

View Article and Find Full Text PDF

The liver is supplied by a dual blood flow system consisting of the portal vein and hepatic artery. Imaging techniques for diagnosing hepatocellular carcinoma (HCC) have been developed along with blood flow imaging, which visualizes the amount of arterial and portal blood flow. The diagnosis of HCC differentiation is important for early-stage liver cancer screening and determination of treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!