AI Article Synopsis

  • - This review systematically analyzes how air pollution affects health during outdoor exercise by reviewing 25 relevant studies, focusing on various pollutants like ozone and particulate matter.
  • - The meta-analysis indicates that exercising in polluted environments significantly decreases peak expiratory flow and is linked with airway inflammation and reduced pulmonary function.
  • - Overall, the findings suggest that combining air pollution exposure with outdoor exercise poses increased risks to cardiopulmonary health, immune function, and overall exercise performance.

Article Abstract

This review aims to systematically review and synthesize scientific evidence for the influence of air pollution exposure and outdoor exercise on health. We conducted a literature search in the PubMed, Cochrane, EMBASE, and Web of Science for articles that evaluated the combination effect of air pollution exposure and exercise on health. Questionnaires regarding exposure history, or studies examining indoor air pollution were excluded. Each included study needs to have clear exercise intervention plan. The pooled estimates of the combination effect of air pollution exposure and outdoor exercise on health were calculated in the meta-analysis. The quality of each included study was assessed and the quality of evidence for each outcome assessed in the meta-analysis was also measured. Twenty-five studies were identified. Six studies addressed ozone exposure, four diesel exhaust exposure, six traffic-related air pollution, ten particulate matter (PM) exposure. Only peak expiratory flow (effect size [ES] = -0.238, 95% confidence interval [CI] = -0.389, -0.088) was found to be significantly decreased after exercise intervention in a polluted environment in the meta-analysis. Seven studies reported exposure to air pollutant during exercise was associated with an increased risk of airway inflammation and decrements in pulmonary function. Six studies discovered that exposure of traffic pollution or high PM during exercise may contribute to changes in blood pressure, systemic conduit artery function and micro-vascular function. The combination effect of air pollution and exercise was found to be associated with the increased risk of potential health problems of cardiopulmonary function, immune function, and exercise performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.12.036DOI Listing

Publication Analysis

Top Keywords

air pollution
24
pollution exposure
12
exercise health
12
combination air
12
exercise
10
exposure
10
exposure outdoor
8
outdoor exercise
8
included study
8
exercise intervention
8

Similar Publications

Background: Tracheal, bronchial, and lung cancers (TBL cancers) pose a significant global health challenge, with rising incidence and mortality rates, particularly in China. Studies from the Global Burden of Disease (GBD), 2021, can guide screening and prevention strategies for TBL cancer. This study aims to provide a comprehensive analysis of the burden of TBL cancers in China compared to global data.

View Article and Find Full Text PDF

Increasing evidence demonstrates a robust link between environmental pollutants and allergic reactions, with air and indoor pollution exacerbating respiratory allergies and climate change intensifying seasonal allergies. Comprehensive action, including government regulations, public awareness, and individual efforts, is essential to mitigate pollution's impact on allergies and safeguard public health and ecological balance. Recent findings indicate a strong correlation between environmental pollutants and allergic reactions, with air pollution from vehicular emissions and industrial activities exacerbating respiratory allergies like asthma and allergic rhinitis.

View Article and Find Full Text PDF

Objective: We examined if racial residential segregation (RRS) - a fundamental cause of disease - is independently associated with air pollution after accounting for other neighborhood and individual-level sociodemographic factors, to better understand its potential role as a confounder of air pollution-health studies.

Methods: We compiled data from eight large cohorts, restricting to non-Hispanic Black and White urban-residing participants observed at least once between 1999 and 2005. We used 2000 decennial census data to derive a spatial RRS measure (divergence index) and neighborhood socioeconomic status (NSES) index for participants' residing Census tracts, in addition to participant baseline data, to examine associations between RRS and sociodemographic factors (NSES, education, race) and residential exposure to spatiotemporal model-predicted PM and NO levels.

View Article and Find Full Text PDF

Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects.

Environ Health (Wash)

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM) and ozone (O) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems.

View Article and Find Full Text PDF

Metallomic Classification of Pulmonary Nodules Using Blood by Deep-Learning-Boosted Synchrotron Radiation X-ray Fluorescence.

Environ Health (Wash)

January 2025

CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Ambient air pollution is an important contributor to increasing cases of lung cancer, which is a malignant cancer with the highest mortality among all cancers. It primarily manifests in the form of pulmonary nodules, but not all will develop into lung cancer. Therefore, it is highly desired to distinguish between benign and malignant pulmonary nodules for the early prevention and treatment of lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!