This review aims to systematically review and synthesize scientific evidence for the influence of air pollution exposure and outdoor exercise on health. We conducted a literature search in the PubMed, Cochrane, EMBASE, and Web of Science for articles that evaluated the combination effect of air pollution exposure and exercise on health. Questionnaires regarding exposure history, or studies examining indoor air pollution were excluded. Each included study needs to have clear exercise intervention plan. The pooled estimates of the combination effect of air pollution exposure and outdoor exercise on health were calculated in the meta-analysis. The quality of each included study was assessed and the quality of evidence for each outcome assessed in the meta-analysis was also measured. Twenty-five studies were identified. Six studies addressed ozone exposure, four diesel exhaust exposure, six traffic-related air pollution, ten particulate matter (PM) exposure. Only peak expiratory flow (effect size [ES] = -0.238, 95% confidence interval [CI] = -0.389, -0.088) was found to be significantly decreased after exercise intervention in a polluted environment in the meta-analysis. Seven studies reported exposure to air pollutant during exercise was associated with an increased risk of airway inflammation and decrements in pulmonary function. Six studies discovered that exposure of traffic pollution or high PM during exercise may contribute to changes in blood pressure, systemic conduit artery function and micro-vascular function. The combination effect of air pollution and exercise was found to be associated with the increased risk of potential health problems of cardiopulmonary function, immune function, and exercise performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2018.12.036 | DOI Listing |
Thorac Cancer
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Tracheal, bronchial, and lung cancers (TBL cancers) pose a significant global health challenge, with rising incidence and mortality rates, particularly in China. Studies from the Global Burden of Disease (GBD), 2021, can guide screening and prevention strategies for TBL cancer. This study aims to provide a comprehensive analysis of the burden of TBL cancers in China compared to global data.
View Article and Find Full Text PDFFront Allergy
January 2025
Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.
Increasing evidence demonstrates a robust link between environmental pollutants and allergic reactions, with air and indoor pollution exacerbating respiratory allergies and climate change intensifying seasonal allergies. Comprehensive action, including government regulations, public awareness, and individual efforts, is essential to mitigate pollution's impact on allergies and safeguard public health and ecological balance. Recent findings indicate a strong correlation between environmental pollutants and allergic reactions, with air pollution from vehicular emissions and industrial activities exacerbating respiratory allergies like asthma and allergic rhinitis.
View Article and Find Full Text PDFEnviron Epidemiol
February 2025
Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington.
Objective: We examined if racial residential segregation (RRS) - a fundamental cause of disease - is independently associated with air pollution after accounting for other neighborhood and individual-level sociodemographic factors, to better understand its potential role as a confounder of air pollution-health studies.
Methods: We compiled data from eight large cohorts, restricting to non-Hispanic Black and White urban-residing participants observed at least once between 1999 and 2005. We used 2000 decennial census data to derive a spatial RRS measure (divergence index) and neighborhood socioeconomic status (NSES) index for participants' residing Census tracts, in addition to participant baseline data, to examine associations between RRS and sociodemographic factors (NSES, education, race) and residential exposure to spatiotemporal model-predicted PM and NO levels.
Environ Health (Wash)
January 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Air pollution is increasingly recognized as a significant health risk, yet our understanding of its underlying chemical and physiological mechanisms remains incomplete. Fine particulate matter (PM) and ozone (O) interact with biomolecules in intracellular and microenvironments, such as the epithelial lining fluid (ELF), leading to the generation of reactive oxygen species (ROS). These ROS trigger cellular inflammatory responses and oxidative stress, contributing to a spectrum of diseases affecting the respiratory, cardiovascular, and central nervous systems.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Ambient air pollution is an important contributor to increasing cases of lung cancer, which is a malignant cancer with the highest mortality among all cancers. It primarily manifests in the form of pulmonary nodules, but not all will develop into lung cancer. Therefore, it is highly desired to distinguish between benign and malignant pulmonary nodules for the early prevention and treatment of lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!