Evolution of PI3Kγ and δ Inhibitors for Inflammatory and Autoimmune Diseases.

J Med Chem

Respiratory, Inflammation & Autoimmunity Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit , AstraZeneca , Boston , Massachusetts 02451 , United States.

Published: May 2019

Phosphoinositol 3-kinases (PI3Ks) γ and δ are key enzymes in hematopoietic cells and have been seen as high-value targets for the treatment of diseases with inflammatory and immunomodulatory components since their discovery and the identification of their roles. In this Perspective we review progress in the application of inhibitors of PI3Kγ and δ to inflammatory and immunological conditions over the past 6 years. We consider progress in the understanding of the roles of PI3Kγ and PI3Kδ in immunology and inflammation, the experience from clinical trials where inhibitors have been tested, and what has been learned about the safety of their use. The extensive medicinal chemistry efforts to discover both isoform selective and dual PI3Kγδ inhibitors are analyzed and detailed. Developments in understanding the structural chemistry of the PI3K enzymes and the factors that govern isoform selectivity are discussed. The effects observed with the known inhibitor compounds in animal models are described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.8b01298DOI Listing

Publication Analysis

Top Keywords

evolution pi3kγ
4
inhibitors
4
pi3kγ inhibitors
4
inhibitors inflammatory
4
inflammatory autoimmune
4
autoimmune diseases
4
diseases phosphoinositol
4
phosphoinositol 3-kinases
4
3-kinases pi3ks
4
pi3ks key
4

Similar Publications

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

SARS-CoV-2 excretion and genetic evolution in nasopharyngeal and stool samples from primary immunodeficiency and immunocompetent pediatric patients.

Virol J

January 2025

Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.

Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.

Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.

Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!