Advanced wearable strain sensors with high sensitivity and stretchability are an essential component of flexible and soft electronic devices. Conventional metal- and semiconductor-based strain sensors are rigid, fragile, and opaque, restricting their applications in wearable electronics. Graphene-based percolative structures possess high flexibility and transparency but lack high sensitivity and stretchability. Inspired by the highly flexible spider web architecture, we propose semitransparent, ultrasensitive, and wearable strain sensors made from an elastomer-filled graphene woven fabric (E-GWF) for monitoring human physiological signals. The highly flexible elastomer microskeleton and the hierarchical structure of a graphene tube offer the strain sensor with both excellent sensing and switching capabilities. Two different types of E-GWF sensors, including freestanding E-GWF and E-GWF/polydimethylsiloxane (PDMS) composites, are developed. When their structure is controlled and optimized, the E-GWF strain sensors simultaneously exhibit extraordinary characteristics, such as a high gauge factor (70 at 10% strain, which ascends to 282 at 20%) in respect to other semitransparent or transparent strain sensors, a broad sensing range up to 30%, and excellent linearity. The E-GWF/PDMS composite sensor shows a unique reversible switching behavior at a high strain level of 30-50%, making it a suitable material for fast and reversible strain switching required in many early warning systems. With a view to real-world applications of these sensors and switches, we demonstrate human motion detection and switch controls of light-emitting-diode lamps and liquid-crystal-display circuits. Their unique structure and capabilities can find a wide range of practical applications, such as health monitoring, medical diagnosis, early warning systems for structural failure, and wearable displays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b18312 | DOI Listing |
Mater Horiz
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
Flexible hydrogel sensors have found extensive applications. However, the insufficient sensing sensitivity and the propensity to freeze at low temperatures restrict their use, particularly in frigid conditions. Herein, a multifunctional eutectogel with high transparency, anti-freezing, anti-swelling, adhesive, and self-healing properties is prepared by a one-step photopolymerization of acrylic acid and lauryl methacrylate in a binary solvent comprising water and deep eutectic solvent (DES).
View Article and Find Full Text PDFTalanta
January 2025
Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China. Electronic address:
The growing demand for glycolate, fueled by economic development, requires the advancement of production methods. Escherichia coli (E. coli), a preferred host for glycolate production, has undergone extensive metabolic engineering to improve yield.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:
Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China. Electronic address:
Soft ionic conductors are promising candidates for epidermal electrodes, flexible sensors, ionic skins, and other soft iontronic devices. However, their inadequate ionic conductivity and mechanical properties (such as toughness and adhesiveness) are still the main constraints for their wide applications in wearable bioelectronics. Herein, an all-biocompatible composite gel with a double-network (DN) strategy is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!