Novel 3D in vitro models to evaluate trophoblast migration and invasion.

Am J Reprod Immunol

Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.

Published: March 2019

Problem: Embryo implantation depends on the interactions between the developing embryo and the maternal endometrium. Signals originating from the decidua play a critical role in the process of implantation and trophoblast invasion; however, the molecular mechanisms mediating this interaction are poorly understood. The objective of this study was to develop in vitro models that would mimic the processes of attachment, migration, and early invasion of the trophoblast.

Methods Of Study: First trimester trophoblast cells (Sw.71 cells) were cultured in low attachment plates to form blastocyst-like spheroids (BLS). Epithelial-mesenchymal transition (EMT) characterization during BLS formation was determined by RT-PCR and Western Blot. The two 3D in vitro culture models consist of (a) trophoblast migration: BLS cultured in suspension (b) trophoblast invasion: human endometrium stromal cells (HESC) plated in the bottom of a 96-well plate, covered by Matrigel and BLS transferred on top. Matrigel was used to mimic the human endometrial extracellular matrix.

Results: Using 3D cell culture systems and real-time imaging, we are able to determine the impact of endometrial factors on trophoblast cell function. Endometrial stromal cells promote blastocyst-like spheroid migration of trophoblast cells and invasion of the extracellular matrix.

Conclusion: We report the characterization of 3D in vitro models to evaluate the interaction between endometrial cells and trophoblast during the process of migration and invasion. The models are useful tools in order to further study the molecular mechanism of embryo-maternal uterine cells interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aji.13076DOI Listing

Publication Analysis

Top Keywords

vitro models
12
models evaluate
8
trophoblast
8
trophoblast migration
8
migration invasion
8
trophoblast invasion
8
trophoblast cells
8
stromal cells
8
cells
7
invasion
6

Similar Publications

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

Predicting factors of ovarian responses in infertile women with polycystic ovary syndrome undergoing IVF/ICSI.

J Assist Reprod Genet

January 2025

Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699nd West Gao Ke Road, Shanghai, 201204, China.

Purpose: Women with polycystic ovary syndrome (PCOS) show greater heterogeneity in ovarian responses during ovarian stimulation. We aimed to investigate the potential predicting factors among individualized basic parameters that affect poor or hyper ovarian responses in PCOS patients.

Methods: We retrospectively screened 2058 women with PCOS who underwent their first cycle of in vitro fertilization/intracytoplasmic sperm injection.

View Article and Find Full Text PDF

Purpose: Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.

Methods: The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!