Context representations have been widely used to profit semantic image segmentation. The emergence of depth data provides additional information to construct more discriminating context representations. Depth data preserves the geometric relationship of objects in a scene, which is generally hard to be inferred from RGB images. While deep convolutional neural networks (CNNs) have been successful in solving semantic segmentation, we encounter the problem of optimizing CNN training for the informative context using depth data to enhance the segmentation accuracy. In this paper, we present a novel switchable context network (SCN) to facilitate semantic segmentation of RGB-D images. Depth data is used to identify objects existing in multiple image regions. The network analyzes the information in the image regions to identify different characteristics, which are then used selectively through switching network branches. With the content extracted from the inherent image structure, we are able to generate effective context representations that are aware of both image structures and object relationships, leading to a more coherent learning of semantic segmentation network. We demonstrate that our SCN outperforms state-of-the-art methods on two public datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2018.2885062DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
16
depth data
16
context representations
12
switchable context
8
context network
8
segmentation rgb-d
8
rgb-d images
8
image regions
8
context
6
segmentation
6

Similar Publications

Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.

View Article and Find Full Text PDF

Discretely monitoring traffic systems and tracking payloads on vehicle targets can be challenging when traversal occurs off main roads where overhead traffic cameras are not present. This work proposes a portable roadside vehicle detection system as part of a solution for tracking traffic along any path. Training semantic segmentation networks to automatically detect specific types of vehicles while ignoring others will allow the user to track payloads present only on certain vehicles of interest, such as train cars or semi-trucks.

View Article and Find Full Text PDF

Liver cancer has a high mortality rate worldwide, and clinicians segment liver vessels in CT images before surgical procedures. However, liver vessels have a complex structure, and the segmentation process is conducted manually, so it is time-consuming and labor-intensive. Consequently, it would be extremely useful to develop a deep learning-based automatic liver vessel segmentation method.

View Article and Find Full Text PDF

In breast diagnostic imaging, the morphological variability of breast tumors and the inherent ambiguity of ultrasound images pose significant challenges. Moreover, multi-task computer-aided diagnosis systems in breast imaging may overlook inherent relationships between pixel-wise segmentation and categorical classification tasks. Approach.

View Article and Find Full Text PDF

Instance segmentation of surgical instruments is a long-standing research problem, crucial for the development of many applications for computer-assisted surgery. This problem is commonly tackled via fully-supervised training of deep learning models, requiring expensive pixel-level annotations to train. In this work, we develop a framework for instance segmentation not relying on spatial annotations for training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!