Most variational formulations for structure-texture image decomposition force structure images to have small norm in some functional spaces, and share a common notion of edges, i.e., large-gradients or -intensity differences. However, such definition makes it difficult to distinguish structure edges from oscillations that have fine spatial scale but high contrast. In this paper, we introduce a new model by learning deep variational prior for structure images without explicit training data. An alternating direction method of multiplier (ADMM) algorithm and its modular structure are adopted to plug deep variational priors into an iterative smoothing process. The central observations are that convolution neural networks (CNNs) can replace the total variation prior, and are indeed powerful to capture the natures of structure and texture. We show that our learned priors using CNNs successfully differentiate highamplitude details from structure edges, and avoid halo artifacts. Different from previous data-driven smoothing schemes, our formulation provides another degree of freedom to produce continuous smoothing effects. Experimental results demonstrate the effectiveness of our approach on various computational photography and image processing applications, including texture removal, detail manipulation, HDR tone-mapping, and nonphotorealistic abstraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2018.2889531 | DOI Listing |
Cureus
January 2025
Department of Critical Care Medicine, Jen Ho Hospital, Show Chwan Health Care System, Changhua, TWN.
Diffusion models, variational autoencoders, and generative adversarial networks (GANs) are three common types of generative artificial intelligence models for image generation. Among these, GANs are the most frequently used for medical image generation and are often employed for data augmentation in various studies. However, due to the adversarial nature of GANs, where the generator and discriminator compete against each other, the training process can sometimes end with the model unable to generate meaningful images or even producing noise.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China.
The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi, 75660, Pakistan.
Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!