Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionichjkuo61ka2db8fg2glmddjt6hvsvcm): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To characterize the spectral-domain optical coherence tomography (SD-OCT) findings of the rhodopsin S334ter transgenic rats (line 4) in relation to the morphologic and electroretinographic features.
Materials And Methods: Rhodopsin S334ter transgenic rats (line 4) were employed as a model of retinal degeneration. The Sprague-Dawley (SD) rats were used as a wild-type control. SD-OCT (Micron IV®; Phoenix Research Labs, Pleasanton, CA, USA) was performed on the S334ter rats (line 4) from postnatal days (P) 13-110. The longitudinal changes of the SD-OCT images were analyzed both qualitatively and quantitatively in comparison to those of SD rats. The SD-OCT images were also compared to the histological and electron microscopic findings from examination performed on P 22, 36, and 61. Full field combined rod and cone electroretinography (ERG) was performed and the relationship between the thickness of the retinal sublayers and the amplitudes of the a- and b-waves was further analyzed.
Results: The photoreceptor inner and outer segment layer became diffusely hyperreflective in the SD-OCT images of the S334ter rats; these findings were not observed in the SD rats. This hyperreflective change corresponded to the degenerated inner and outer segments and the accumulation of the extracellular vesicles in the interphotoreceptor matrix. Quantitatively, the retinal outer sublayer and the photoreceptor sublayer in the S334ter rats became progressively thinner in comparison to those in the SD rats; the difference was statistically significant. The amplitudes of both the a- and b-waves on ERG were severely deteriorated in the S334ter rats.
Discussion: The SD-OCT images in the S334ter rats noninvasively provided information regarding the pathological changes in the photoreceptors and the longitudinal changes of both qualitative and quantitative changes during retinal degeneration in the S334ter rats (line 4). The pathological features of the photoreceptor inner and outer segments can be detected on SD-OCT as diffuse hyperreflective changes in the photoreceptor layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276524 | PMC |
http://dx.doi.org/10.1155/2018/5174986 | DOI Listing |
Brain Stimul
June 2022
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. Electronic address:
Background: Given that visual impairment is bi-directionally associated with depression, we examined whether transcorneal electrical stimulation (TES), a non-invasive treatment for visual disorders, can ameliorate depressive symptoms.
Objective: The putative antidepressant-like effects of TES and the underlying mechanisms were investigated in an S334ter-line-3 rat model of retinal degeneration and a rat model of chronic unpredictable stress (CUS).
Methods: TES was administered daily for 1 week in S334ter-line-3 and CUS rats.
Pharmaceutics
April 2022
Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Retinitis pigmentosa (RP) consists of a group of inherited, retinal degenerative disorders and is characterized by progressive loss of rod photoreceptors and eventual degeneration of cones in advanced stages, resulting in vision loss or blindness. Gene therapy has been effective in treating autosomal recessive RP (arRP). However, limited options are available for patients with autosomal dominant RP (adRP).
View Article and Find Full Text PDFBrain Res
October 2021
Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Los Angeles, CA, United States; Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Palo Alto, CA, United States. Electronic address:
Environmental changes in the retina, including oxidative stress-induced cell death, influence photoreceptor degeneration in Retinitis Pigmentosa (RP). Previously, we tested and discovered that a cytoprotective chaperone protein, clusterin, produced robust preservation of rod photoreceptors of a rat autosomal dominant rhodopsin transgenic model of RP, S334ter-line3. To investigate the biochemical and molecular cytoprotective pathways of clusterin, we examined and compared a known source of cone cell death, nitric oxide (NO), observing nNOS expression using antibody against nNOS in RP retinas with intravitreal injections of saline, clusterin (10 μg/ml), or a non-isoform-selective NOS inhibitor (25 mM), L-NAME, or with an intraperitoneal injection (IP) of L-NAME (100 mg/kg).
View Article and Find Full Text PDFVision Res
December 2020
Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China; Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China. Electronic address:
Rhodopsin S334ter-3 retinal degeneration rats have been widely used to investigate degenerative diseases of the retina. In this model, morphological and electrophysiological changes have been observed in the retina, superior colliculus and primary visual cortex (V1). However, no study so far has examined rhodopsin S334ter-3 rats with regards to their contrast response in V1 - a fundamental property of visual information processing.
View Article and Find Full Text PDFBiomed Res Int
April 2020
Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Purpose: The aim of this study was to understand the relationship between the findings of spectral-domain optical coherence tomography (SD-OCT) of previously reported animal models of retinitis pigmentosa (RP) associated with known genetic mutations and their background structural and functional changes.
Methods: We reviewed previous publications reporting the SD-OCT findings of animal models of RP and summarized the characteristic findings of SD-OCT in nine different animal models ( , P23H, S334ter, , , rp12, (rd1 and rd10), and ) of human RP.
Results: Despite the various abnormal structural changes found in these different animal models, progressive thinning of the outer nuclear layer (ONL) and hyperreflective change in the inner and outer segment (IS-OS) layers of the photoreceptors were commonly observed on SD-OCT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!