The dysregulation of long non-coding RNAs (lncRNAs) is associated with the development of various diseases. However, little is known about the regulatory function of lncRNAs in peritendinous fibrosis. Therefore, the expression profiles of lncRNAs and mRNAs in normal tendon and fibrotic peritendinous tissues were analyzed in this study using RNA sequencing. In total, 219 lncRNAs and 3403 mRNAs were identified that were differentially expressed between the two sets of tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the dysregulated mRNAs were mainly associated with immune regulation, inflammation, extracellular matrix (ECM) production and remodeling, and cell cycle regulation. An lncRNA-mRNA co-expression network revealed 181 network pairs comprising eight dysregulated lncRNAs and 146 mRNAs. The results of the bioinformatics analysis indicated that the dysregulated lncRNAs play a role in fibrogenesis through regulation of the cell cycle, inflammation, and ECM production. Furthermore, silencing the lncRNA dnm3os prevented transforming growth factor (TGF)-β1-induced tenocyte proliferation and expression of genes related to fibrogenesis. These findings provide a basis for investigations into the regulatory mechanisms underlying the development and progression of peritendinous fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300459PMC
http://dx.doi.org/10.1016/j.jare.2018.08.001DOI Listing

Publication Analysis

Top Keywords

peritendinous fibrosis
12
long non-coding
8
non-coding rnas
8
mrnas associated
8
ecm production
8
cell cycle
8
dysregulated lncrnas
8
lncrnas
6
mrnas
5
integrated analysis
4

Similar Publications

Tendon injuries often exhibit limited healing capacity, frequently complicated by peritendinous adhesion, posing a substantial challenge in clinical tendon repair. Although present biomaterial-based membranes offer a promising strategy for tendon treatment, their clinical application is hindered by inflammation-induced adhesion. Herein, this study presents a dual-functional biomimetic tendon sheath based on a coaxial electrospun nanofibrous membrane for enhancing tendon repair and simultaneously preventing peritendinous adhesion.

View Article and Find Full Text PDF

Human Tendon-on-a-Chip for Modeling the Myofibroblast Microenvironment in Peritendinous Fibrosis.

Adv Healthc Mater

November 2024

Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, 14642, USA.

Understanding the myofibroblast microenvironment is critical to developing therapies for fibrotic diseases. Here the development of a novel human tendon-on-a-chip (hToC) is reported to model this crosstalk in peritendinous adhesions, which currently lacks biological therapies. The hToC facilitates cellular and paracrine interactions between a vascular component, which contains endothelial cells and monocytes, and a tissue hydrogel component that houses tendon cells and macrophages.

View Article and Find Full Text PDF

Inhibition of peritendinous adhesion through targeting JAK2-STAT3 signaling pathway: The therapeutic potential of AG490.

Int Immunopharmacol

December 2024

Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, China; Elderly Hip Fracture Diagnosis and Treatment Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China. Electronic address:

Peritendinous adhesion is a common complication following tendon injury repair, posing a significant clinical challenge that requires urgent attention. The primary cause of peritendinous adhesion is the excessive deposition of collagen matrix due to the abnormal proliferation of fibroblasts in an inflammatory state. Janus kinase2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) are key signaling molecules involved in cell proliferation and fibrosis development in various organs.

View Article and Find Full Text PDF

Postoperative adhesion (POA) is a common and serious complication following various types of surgery. Current physical barriers either have a short residence time at the surgical site with a low tissue attachment capacity or are prone to undesired adhesion formation owing to the double-sided adhesive property, which limits the POA prevention efficacy of the barriers. In this study, Janus-structured microgels (Janus-MGs) with asymmetric tissue adhesion capabilities are fabricated using a novel bio-friendly gas-shearing microfluidic platform.

View Article and Find Full Text PDF

Post-traumatic tendon adhesions significantly affect patient prognosis and quality of life, primarily stemming from the absence of effective preventive and curative measures in clinical practice. Current treatment modalities, including surgical excision and non-steroidal anti-inflammatory drugs, frequently exhibit limited efficacy or result in severe side effects. Consequently, the use of anti-adhesive barriers for drug delivery and implantation at the injury site to address peritendinous adhesion (PA) has attracted considerable attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!