Nearly all viruses of the Reoviridae family possess a multi-layered capsid consisting of an inner layer with icosahedral T = 1 symmetry and a second-outer layer (composed of 260 copies of a trimeric protein) exhibiting icosahedral T = 13 symmetry. Here we describe the construction and structural evaluation of an assembly intermediate of the Rice dwarf virus of the family Reoviridae stalled at the second capsid layer via targeted disruption of the trimer-trimer interaction interface in the second-layer capsid protein. Structural determination was performed by conventional and Zernike/Volta phase-contrast cryoelectron microscopy. The assembly defect second-layer capsid trimers bound exclusively to the outer surface of the innermost capsid layer at the icosahedral 3-fold axis. Furthermore, the second-layer assembly could not proceed without specific inter-trimer interactions. Our results suggest that the correct assembly pathway for second-layer capsid formation is highly controlled at the inter-layer and inter-trimer interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2018.10.029 | DOI Listing |
Biointerphases
August 2020
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany.
The development of 2D and 3D structures on the nanoscale containing viral nanoparticles (VNPs) as interesting nanobuilding blocks has come into focus for a bottom-up approach as an alternative to the top-down approach in nanobiotechnology. Our research has focused on the plant Tomato Bushy Stunt Virus (TBSV). In a previous study, we reported the impact of the pH value on the 2D assembly of viral monolayers.
View Article and Find Full Text PDFStructure
March 2019
Institute for Protein Research, Osaka University, Suita, Osaka 565-0871 Japan. Electronic address:
Nearly all viruses of the Reoviridae family possess a multi-layered capsid consisting of an inner layer with icosahedral T = 1 symmetry and a second-outer layer (composed of 260 copies of a trimeric protein) exhibiting icosahedral T = 13 symmetry. Here we describe the construction and structural evaluation of an assembly intermediate of the Rice dwarf virus of the family Reoviridae stalled at the second capsid layer via targeted disruption of the trimer-trimer interaction interface in the second-layer capsid protein. Structural determination was performed by conventional and Zernike/Volta phase-contrast cryoelectron microscopy.
View Article and Find Full Text PDFVirus Res
July 2007
Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China.
The P10 protein encoded by S10 ORF of Rice black-streaked dwarf virus (RBSDV) was thought to be the component of outer shell of viral particle. In the present study, P10 has an ability for self-interaction as shown by a GAL4 transcription activator-based yeast two-hybrid assay system and further confirmed by in vitro far-Western blot analysis. The domain responsible for P10-P10 self-interaction was mapped to the first 230 amino acids at the N-terminal region of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!