The ATPase activity of H-FF-ATP synthase (FF) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FF and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FF of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FF noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FF from B. subtilis. ADP-inhibition in the mutant FF was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FF ADP-inhibition attenuation in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.12.075 | DOI Listing |
Signal Transduct Target Ther
January 2025
Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
Zool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFHeart Fail Rev
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
With rising incidence, mortality and limited therapeutic options, heart failure with preserved ejection fraction (HFpEF) remains one of the most important topics in cardiovascular medicine today. Characterised by left ventricular diastolic dysfunction partially due to impaired Ca homeostasis, one ion channel in particular, SarcoEndoplasmic Reticulum Ca-ATPase (SERCA2a), may play a significant role in its pathophysiology. A better understanding of the complex mechanisms interplaying to contribute to SERCA2a dysfunction will help develop treatments targeting it and thus address the growing clinical challenge HFpEF poses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!