Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background and Purpose- Cerebral hypoperfusion symptoms (defined as symptoms related to change in position, effort or exertion, or recent change in antihypertensive medication) have been used in stroke studies as a surrogate for detecting hemodynamic compromise. However, the validity of these symptoms in identifying flow compromise in patients has not been well established. We examined whether hypoperfusion symptoms correlated with quantitative measurements of flow compromise in the prospective, observational VERiTAS study (Vertebrobasilar Flow Evaluation and Risk of Transient Ischemic Attack and Stroke). Methods- VERiTAS enrolled patients with recent vertebrobasilar transient ischemic attack or stroke and ≥50% atherosclerotic stenosis or occlusion in vertebral or basilar arteries. Hemodynamic status using vertebrobasilar large vessel flow was measured using quantitative magnetic resonance angiography, and patients were designated as low, borderline, or normal flow based on distal territory regional flow, incorporating collateral capacity. The presence of qualifying event hypoperfusion symptoms was assessed relative to the quantitatively determined flow status (normal versus borderline/low) and also examined as a predictor of subsequent stroke risk. Results- Of the 72 enrolled subjects, 66 had data on hypoperfusion symptoms available. On initial quantitative magnetic resonance angiography designation, 43 subjects were designated as normal flow versus 23 subjects designated as low flow (n=16) or borderline flow (n=7). Of these, 5 (11.6%) normal flow and 3 (13.0%) low/borderline flow subjects reported at least one qualifying event hypoperfusion symptom ( P=0.99, Fisher exact test). Hypoperfusion symptoms had a positive predictive value of 37.5% and negative predictive value of 65.5% for low/borderline flow status. Compared with flow status, which strongly predicted subsequent stroke risk, hypoperfusion symptoms were not associated with stroke outcome ( P=0.87, log-rank test). Conclusions- These results suggest that hypoperfusion symptoms alone correlate poorly with actual hemodynamic compromise as assessed by quantitative magnetic resonance angiography and subsequent stroke risk in vertebrobasilar disease, and are not a reliable surrogate for flow measurement. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT00590980.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349517 | PMC |
http://dx.doi.org/10.1161/STROKEAHA.118.023101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!