The hydrogen-deficient and oxygen-rich nature of lignocellulosic biomass prohibits effective conversions of biomass to fuels and chemicals via catalytic pyrolysis due to significant coking of the catalysts. Co-feeding of biomass feedstock with hydrogen-rich and oxygen-deficient thermoplastics could improve the process. Herein, thermal and catalytic co-pyrolysis of cellulose and polyethylene (PE) was studied via thermogravimetry combined with an online photoionization time-of-flight mass spectrometry (PI-TOF-MS). No notable synergetic effect was found in the thermal co-pyrolysis process while a considerable synergetic effect was observed during the catalytic co-pyrolysis. In the case of catalytic pyrolysis, co-feeding of cellulose with PE significantly improved the aromatic formation. Detailed reaction intermediates and products were detected by PI-TOF-MS and the process of aromatization could be ascribed to aromatization of small oxygenates and olefins, as well as Diels-Alder reaction and dehydration by HZSM-5. Moreover, this study provides a reliable tool for screening and optimizing of catalytic co-pyrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.12.045DOI Listing

Publication Analysis

Top Keywords

catalytic co-pyrolysis
16
online photoionization
8
co-pyrolysis cellulose
8
cellulose polyethylene
8
catalytic pyrolysis
8
catalytic
6
co-pyrolysis
5
photoionization mass
4
mass spectrometric
4
spectrometric evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!