Extracellular polymeric substances (EPS) play significant roles in protecting cells against environmental stresses. However, little information is known about the roles of different EPS in these processes. In this study, the productions and physicochemical characterizations of soluble-EPS (S-EPS) and bound-EPS (B-EPS), the two different fractions of EPS from a green alga Chlorella vulgaris under the stress of ZnO nanoparticle (nano-ZnO) were investigated. The contents of S-EPS and B-EPS which described as dissolved organic carbon, polysaccharides and proteins, both increased with the addition of tested nano-ZnO (0.01 and 0.04 mM) in a 72 h cultivation. EPS-Free (EPS-F) cells produced more S-EPS and B-EPS than the EPS-Cover (EPS-C) cells did with the tested nano-ZnO, especially the contents of protein in the S-EPS of EPS-F cells increased by 45.5% with 0.04 mM nano-ZnO compared to the control at 72 h. Tryptophan-like substances of the protein in S-EPS exhibited a stronger chemical static quenching than tyrosine-like substances with nano-ZnO. In addition, the hydroxyl (OH) as well as carboxyl (CO) group, and CO of amide I, NH/CN of amide II groups in proteins were confirmed that involved in the reaction of S-EPS and B-EPS with nano-ZnO, meanwhile hemiacetal groups in saccharides were oxidized to carboxyl groups. This study could provide a better understanding of EPS in protecting against cells damage with nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.12.019 | DOI Listing |
Water Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.
View Article and Find Full Text PDFSci Total Environ
October 2024
Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China. Electronic address:
Extracellular polymeric substances (EPS) have demonstrated significant benefits for reducing multivalent metal contamination. Using Achromobacter xylosoxidans BP1 isolated from a coal chemical site in China, this study elucidated the contribution of EPS production to Cr (VI) reduction and revealed its biological removal mechanism. BP1 grew at an optimum pH of 8 and the lowest inhibitory concentration of Cr(VI) was 300 mg/L.
View Article and Find Full Text PDFWater Res
August 2024
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water.
View Article and Find Full Text PDFWater Res
September 2023
School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Luoyu Road 1037, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.
A comparative study of the different advanced oxidation processes (Fe(II)-Oxone, Fe(II)-HO, and Fe(II)-NaClO) was carried out herein to analyze the characteristics of organic components and the migration of heavy metals in waste activated sludge. With the Fe(II)-Oxone and Fe(II)-HO treatments, sludge dewaterability was significantly improved, however, sludge dewaterability was deteriorated by the Fe(II)-NaClO treatment. The enhanced sludge dewaterability by the Fe(II)-Oxone and Fe(II)-HO treatments was strongly correlated with the shifted organic components, particularly proteins, in soluble extracellular polymeric substances (S-EPS), while the deteriorated sludge dewaterability by the Fe(II)-NaClO treatment was strongly correlated with the over release of organic components from bound EPS (B-EPS) to S-EPS.
View Article and Find Full Text PDFJ Environ Sci Health B
April 2022
Centre Eau, Terre et Environnement, Institut national de la recherche scientifique, Québec, Québec, Canada.
Fermentation of was conducted using crude glycerol fortified with secondary paper mill sludge as a carbon source in 5 L fermenter. After 96 hours of fermentation, the fermented broth contained mostly microbial cells surrounded by extracellular polymeric substances (EPS) and other particulate residues from paper mill sludge and glycerol. When this fermented broth is used as it is, it is called broth EPS (B-EPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!