Indole-positive members of the Proteeae usually have inducible expression of chromosomal beta-lactamases. Mutants with stably derepressed beta-lactamase expression occur in inducible populations at frequencies in the range of 10(-6) to 10(-8). The contribution of these beta-lactamases to drug resistance was examined in Morganella morganii and Proteus vulgaris. The M. morganii enzyme was a high-molecular-weight (49,000) class I cephalosporinase with low Vmax rates for ampicillin, carbenicillin, and and broad-spectrum cephalosporins. The P. vulgaris enzyme had a lower molecular weight (32,000) and high Vmax rates for ampicillin, cephaloridine, cefotaxime, and ceftriaxone. Imipenem and cefoxitin inactivated the P. vulgaris enzyme but were low-Vmax, low-Km substrates for that of M. morganii. Despite these differences, the two beta-lactamases caused similar resistance profiles. Ampicillin and cephaloridine were strong inducers for both species, and beta-lactamase-inducible strains and their stably derepressed mutants were resistant, whereas basal mutants (those with low-level uninducible beta-lactamase) were susceptible to these two compounds. Mezlocillin, cefotaxime, ceftriaxone, and (usually) carbenicillin were almost equally active against beta-lactamase-inducible organisms and their basal mutants, but were less active against stably derepressed mutants. This behavior reflected the beta-lactamase lability of these drugs, coupled with their weak inducer activity below the MIC. Carbenicillin was a labile strong inducer for a single P. vulgaris strain, and inducible enzyme was protective against the drug in this atypical organism. Cefoxitin and imipenem, both strong inducers below the MIC, were almost equally active against beta-lactamase-inducible organisms and their basal and stably derepressed mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC175873 | PMC |
http://dx.doi.org/10.1128/AAC.32.9.1385 | DOI Listing |
BMC Vet Res
November 2024
Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria.
Development
August 2022
Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan.
Stable silencing of the inactive X chromosome (Xi) in female mammals is crucial for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher-order chromatin structure of the Xi, the underlying mechanism is largely unknown.
View Article and Find Full Text PDFCells
January 2022
State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
Proper telomere length is essential for indefinite self-renewal of embryonic stem (ES) cells and cancer cells. Telomerase-deficient late generation mouse ES cells and human ALT cancer cells are able to propagate for numerous passages, suggesting telomerase-independent mechanisms responding for telomere maintenance. However, the underlying mechanisms ensuring the telomere length maintenance are unclear.
View Article and Find Full Text PDFMol Med
January 2022
Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China.
Background: Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear.
Methods: shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells.
Mol Imaging Biol
February 2022
Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
Purpose: In the programming of tumor-targeting bacteria, various therapeutic or reporter genes are expressed by different gene-triggering strategies. Previously, we engineered pJL87 plasmid with an inducible bacterial drug delivery system that simultaneously co-expressed two genes for therapy and imaging by a bidirectional tet promoter system only in response to the administration of exogenous doxycycline (Doxy). In this multi-cassette expression approach, tetA promoter (P) was 100-fold higher in expression strength than tetR promoter (P).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!